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Diversifikation der starken Verben im Deutschen 
 

Karl-Heinz Best 
 

Abstract. In this paper the 1-displaced geometric distribution has been fitted to the ranked distribution 
of classes of the strong verbs in German. The classes are defined by the different vocalic alternations 
of the verbs. This way the paper brings a further corroboration of the hypothesis that diversification 
processes abide by laws. 

 
Keywords: German, strong verbs, distribution, diversification 
 
 
1. Starke Verben als Gegenstand der Quantitativen Linguistik 
 
Die Quantitative Linguistik beruht zu wesentlichen Teilen auf der Grundannahme, das Pro-
zesse und Zustände in den Sprachen ebenso wie in der Verwendung der Sprachen von 
Gesetzen gesteuert werden (Beispiele in: Altmann u.a. (2002); Köhler u.a. (Hrsg.) 2005). Eine 
ganze Reihe von Gesetzen sind bekannt, viele davon mehr oder weniger gut überprüft, 
manche bestehen bisher lediglich in Form von noch zu prüfenden Hypothesen.  
 Zu den bekannten und auch überprüften Sprachgesetzen gehören das Piotrowski-
Gesetz ebenso wie das Diversifikationsgesetz. Beide Sprachgesetze lassen sich bei vielen 
verschiedenen Bereichen nachweisen. Eines der Phänomene, das sich dafür anbietet, ist die 
Entwicklung der starken Verben im Deutschen und ihre Diversifikation in der Gegenwarts-
sprache. Dass der Verfall der starken Verben dem Piotrowski-Gesetz folgt, wurde bereits 
nachgewiesen (Best 2003, 12-14). In diesem Beitrag soll ihre Diversifikation untersucht 
werden. 
 
 
2. Gesetzmäßigkeit der Ablautklassen der starken Verben 
 
Generell gilt die Annahme, dass sprachliche Erscheinungen, die in unterschiedlicher Form 
auftreten, dem Gesetz der Diversifikation unterliegen (Altmann 1991, 2005). Dieses Gesetz 
kann je nach Phänomen unterschiedliche Formen annehmen, worüber Altmann (1991, 39-41 
und 2005, 649-655) einen Überblick gibt. Die einfachste Version dieses Gesetzes ist die 
geometrische Verteilung, die in 1-verschobener Form  
 

1; 1,2,...x

x
P pq x   

 
lautet. 
 
 
3. Starke Verben im Deutschen 
 
Das Deutsche hat nur noch eine relativ kleine Anzahl starker Verben, insgesamt 173. Diese 
Verben unterscheiden sich danach, mit Hilfe welcher Ablaute sie ihre Flexionsformen bilden. 
Je nach dem, welche Ablautreihen sie enthalten, kann man sie zu Klassen zusammenfassen. 
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Die starken Verben verteilen sich derzeit auf 39 Ablautreihen. Ordnet man diese Verbklassen 
danach, wie viele Verben zu jeder von ihnen gehören, erhält man eine Rangordnung. Darauf 
angewendet ist die Hypothese zu überprüfen, dass diese nach Häufigkeitsrängen geordneten 
Verbklassen dem Diversifikationsgesetz unterliegen. Um dies zu erreichen, kann man z.B. die 
bereits genannte geometrische Verteilung an die entsprechende Datei anpassen und, wenn 
dies mit Erfolg durchgeführt ist, die Annahme der Gesetzmäßigkeit als bestärkt ansehen. Die 
Verteilung wird in 1-verschobener Form angepasst, da es keine Ablautklasse ohne wenigstens 
ein Verb als Element gibt. 
 Die Daten zur Verteilung der starken Verben auf die Ablautreihen sind der Duden-
Grammatik (1998, 127) entnommen, die anders als die Duden-Grammatik (2009, 452-453) 
die Verben in der für unsere Zwecke erforderlichen Übersicht und vollständig aufführt. 
 
 
4. Überprüfung der geometrischen Verteilung als Modell für die Diversifikation der 

starken Verben 
 
Die Anpassung der 1-verschobenen geometrischen Verteilung mit Hilfe des Altmann-Fitters 
(1997) erbrachte das in Tabelle 1 dargestellte  Ergebnis: 
 

Tabelle 1 
Anpassung der 1-verschobenen geometrischen Verteilung an die Ablautreihen der starken 

Verben im Deutschen  (Duden-Grammatik  1998, 127) 
 

Rang Ablautreihe nx NPx Rang Ablautreihe nx NPx 
1 ei - i - i 23 17.26 21 au - i: - au 2 2.11 
2 i - a - u 19 15.54 22 au - o: - o: 2 1.90  
3 ei - i: - i: 16 13.99 23 a - i - a 2 1.71 
4 i: - o - o 11 12.59 24 i - a: - e 1 1.54 
5 i: - o: - o: 11 11.34 25 i - u - u 1 1.39 
6 e - a - o 9 10.20 26 i - a: - e: 1 1.25 
7 e - o - o 7 9.19 27 i: - a: - e: 1 1.12 
8 i - a - o 6 8.27 28 a - o - o 1 1.01 
9 a: - u: - a: 6 7.45 29 e: - u - o 1 0.91 
10 e: - a: - e: 6 6.70 30 e: - a: -o 1 0.82 
11 e - a: - o 5 6.03 31 o - a: - o 1 0.74 
12 e - a: - e 5 5.43 32 o: - i: - o: 1 0.66 
13 e: - o: - o: 5 4.89 33 u: - i: - u: 1 0.60 
14 a – u: - a 4 4.40 34 ä - i - a 1 0.54 
15 a: - i:- a: 4 3.96 35 ä: - a: - o: 1 0.48 
16 a - i:- a 3 3.57 36 ö - o - o 1 0.44 
17 e: - a: - o: 3 3.21 37 ö: - o: - o: 1 0.39 
18 ä: - o: - o: 3 2.89 38 au - o - o 1 0.35 
19 ü: - o: - o: 3 2.60 39 ei - i: - ei 1 3.19 
20 i - o - o 2 2.34     

p = 0.0998     FG = 31     X² = 11.507     P = 0.99 (abgerundet) 
Legende zur Tabelle: 
Der Doppelpunkt in den Ablautreihen zeigt die Länge der betreffenden Vokale an. 
Rang:  nach Zahl der Verben geordnete Rangfolge der Ablautreihen  
p: Parameter der Verteilung 
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nx: beobachtete Zahl der Verben der jeweiligen Ablautreihe 
NPx:  durch Anpassung der 1-verschobenen geometrischen Verteilung berechnete Zahl der 

Verben der jeweiligen Ablautreihe  
FG: Freiheitsgrade  
X²: Chiquadrat 
P:  Überschreitungswahrscheinlichkeit des Chiquadrats 
 
Die Anpassung des gewählten Modells an die beobachteten Daten wird als erfolgreich 
angesehen, wenn P ≥ 0.05; diese Bedingung ist erfüllt, so dass man feststellen kann, dass die 
1-verschobene geometrische Verteilung sich als Modell für die nach Rängen geordneten 
Ablautreihen starker Verben im Deutschen  bewährt. 
 Zur Veranschaulichung dient die folgende Graphik zu Tabelle 1; die hellen Balken 
zeigen die beobachteten, die dunklen die berechneten Werte. 
 

Graphik zu Tabelle 1: Anpassung der 1-verschobenen geometrischen Verteilung an die 
Ablautklassen der starken Verben im Deutschen 

 
 
5. Zusammenfassung 
 
Als Ergebnis kann festgestellt werden, dass die Ablautreihen der starken Verben im Deut-
schen, in eine nach der Zahl der Verben geordnete Rangfolge gebracht, der 1-verschobenen 
geometrischen Verteilung unterliegt. Die Hypothese, dass sprachliche Phänomene entspre-
chend einem Sprachgesetz diversifizieren,  konnte damit ein weiteres Mal bekräftigt werden. 
 Abschließend sei darauf hingewiesen, dass außer der geometrischen Verteilung, die 
hier als das einfachste Modell vorgezogen wurde, auch noch andere Verteilungen mit ähnlich 
guten Ergebnissen an die Daten angepasst werden können. Solche Möglichkeiten sind zu 
beachten, solange man nicht im Vorhinein begründen kann, welche Verteilung womöglich 
allein für ein bestimmtes Phänomen in Frage kommen kann. 
 Zu bemerken ist, dass die Klasse von starken Verben eine Menge darstellt, aus der von 
Zeit zu Zeit ein Verb in die Klasse der regelmäßigen Verben übergeht. Auch dieser Prozess 
verläuft gesetzmäßig und ist analog dem radioaktiven Zerfall in der Physik. Die Modellierung 
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des Zerfalls ist zwar leicht, jedoch fehlen uns Daten, die jahrhundertelange Ereignisse 
darstellen. In der Regel fallen seltene Verben aus, ohne Rücksicht auf die Ablautreihe.  
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Non-traditional approach to the study 
of the rhythmics of Russian verse 

 
    Vadim S. Baevskij 

 
Abstract. The paper suggests a more precise method of analysing the iambic and trochaic rhythms of 
Russian verse, as compared with the traditional one – from Andrey Bely to A.N. Kolmogorov and 
M.L. Gasparov inclusive. The method described is based on the linguistic ideas proposed by 
A.A. Potebnya.  

 
Key words: Andrey Bely, dynamically unstable words, syllable prominence, rhythm matrix. 
 
The present paper deals with the alternating rhythms only – the iamb and the trochee. The 
verse of alternating rhythm has been predominant over the whole history of the new Russian 
poetry that is nearly three centuries long. This is the verse rhythm of Pushkin, Pasternak and – 
with a little exception – of all the rest of Russian poets. Alternating rhythms, i.e. rhythms  
comprising the regularly alternating elements; here refers to syllabic positions that may be 
marked either by an unstressed syllable or an extremely prominent (stressed) one. These verse 
meters are characterized by a regular distribution of ictuses and non-ictuses. The ictus is a 
metrically strong syllabic position which is expected to be stressed and, in this way, to 
become extremely prominent. The non-ictus, on the contrary, is not expected to be marked by 
the stress. The expectance or non-expectance of the top prominence of syllables is fostered in 
us by our poetic culture.  

A careful approach reveals, though, that prominence of both ictuses and non-ictuses 
may be of a different kind. However, when at the beginning of the twentieth century Andrey 
Bely began his studies of the Russian verse rhythm, he divided all syllables only into stressed 
and unstressed ones. After him, practically all the other scholars, including Gasparov and 
Kolmogorov, applied this procedure. Such approach suggests that the degree of prominence 
of the ictus and non-ictus should always be the same.  

Some linguists (Potebnya, Koshutich, Shengeli, Bogoroditsky, Reformatsky, Panov, 
Shcherba, Gvozdev) treated the problem of syllable prominence according to its position in an 
utterance (with respect to the other syllables, the stress, the word-boundary) as well as 
according to the structure of this very syllable (open, closed, covert, overt). This problem has 
not been adequately dealt with, though.  
 

■□ 
 
We shall call the methods used in this study as the Potebnya effect – after the scholar 

who was the first to formulate this. It plays an important role in the study of verse theory. The 
most detailed study of rhythm according to the Potebnya effect is given in my doctoral 
dissertation (Baevskij 1975: 141 – 231).The Russian language has a considerable layer of 
dynamically unstable words: pronouns, auxiliary verbs, monosyllabic adverbs, interjections, 
polysyllabic prepositions, conjunctions, particles. Some scholars of verse theory tend to 
consider dynamically unstable words as stressed ones, others as unstressed. Tomashevsky 
considered the dynamically unstable word to be stressed if it falls on the ictus and unstressed 
if it falls on the non-ictus.  
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However, it seems to be very confusing: following Andrey Bely’s ideas, we try to be as 
accurate in the verse study as possible, but the divergence of opinions in this case destroys all 
the precision. Thus, studying Blok’s trochaic pentameter,  A.M. Astakhova records 45.5% of 
stressed syllables on the most significant first ictus (Astakhova 1926: 66), whereas R. 
Kemball records here 63.3% (Kemball 1965: 191). The results of these two papers can not be 
trusted as they diverge by nearly 20%. 

The present paper suggests that one should consider the prominence of both ictuses and 
non-ictuses according to the Potebnya effect (Potebnya 1865: 62). Instead of dividing 
syllables into stressed and unstressed, it is recommended to supply them with a kind of scales, 
on the assumption of the abovementioned phonetic properties. In verse the gradation of 
syllable prominence becomes more complex because it is affected by the metrical structure 
(the position of the word either on the ictus or on the non-ictus). 

 
■□ 

 
Potebnya did not have any special equipment for measuring the sounds in speech and 

the very study of speech sounds occupied a gray area. That is why we had to begin with con-
ducting auditorial and instrumental experiments. The auditorial experiments were conducted 
in Smolensk State Teacher Training Institute where I am working (now it is the State 
University); the instrumental experiments were carried out in the laboratory of Experimental 
Phonetics in Minsk State Teacher Training Institute of Foreign Languages. I feel obliged to 
thank the head of the laboratory, Professor K.K. Baryshnikova, who contributed to the 
success of my work by leaving at my disposal all the equipment, and the laboratory stuff for 
their assistance. Apart from that, she took a deep interest in the subject matter of my research 
and gave me quite a number of extremely valuable pieces of advice. The procedures of the 
experiment carried out, as well as its results, were published in the following publications 
(Baevskij 1967: 50–55; Baevskij 1968: 16–22; Baevskij 1969: 244–250; Baevskij 1970: 157–
168; Baevskij, Osipova 194: 174–195; Baevskij, Osipova 1974: 11–19; Baevskij 1975: 166–
231; Baevskij 2001: 152–172, 307–309). 

 
■□ 

 
In our study of the rhythm each syllable is indicated by a degree of prominence B where 

B each time possesses the value within the following numbers  
В = {1.0; 1.5; 2.0; 2.5; 3.0} 

according to the following rules: 
the stressed syllable of the notional word on the ictus = 3.0; 
the stressed syllable of the notional word on the non-ictus = 2.5; 
the stressed syllable of a metrically dual word both on the ictus and on the non-ictus = 
2.5; 
the first pretonic, the second initial overt, the first and the second post-tonic, the final 
open = 2.0; 
the third pretonic initial overt and the third post-tonic final closed = 1.5; 
the prominence of the rest of the syllables = 1.0. 
The experiment has shown that the differences in the syllable prominence which are 

smaller than 0.5 are not normally detected by human ear. 
Let us illustrate it with an example. 
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Когда я думаю о Блоке, 
когда тоскую по нему, 
то вспоминаю я не строки, 
а мост, пролетку и Неву. 
И над ночными голосами 
чеканный облик седока – 
круги под страшными глазами 
и черный очерк сюртука (Evtushenko 1962: 111). 
 
Let us now supply it with a scheme showing the distribution of the ictuses and non-

ictuses in each line of this text. The ictus is represented by «—», the non-ictus is represented 
by «υ»: 

 
υ  — υ — υ — υ — (υ) 

 
The interpretation of the same verse by Andrey Bely would be rather unvaried. All the 

verses would be alike. 
And now we shall present the rhythm matrix of this text; each syllable here is re-

presented by the number which shows its prominence in speech according to the Potebnya 
effect.  
 

2.0  2.5  2.5  3.0  1.0  2.0  2.0  3.0  2.0 
2.0  2.5  2.0  3.0  2.0  1.0  2.0  3.0 
1.0  1.0  2.0  3.0  2.0  2.5  2.0  3.0  2.0 
2.0  3.0  2.0  3.0  2.0  2.0  2.0  3.0 
1.5  1.0  2.0  3.0  2.0  1.0  2.0  3.0  2.0 
2.0  3.0  1.0  3.0  1.0  1.0  2.0  3.0 
2.0  3.0  2.0  3.0  1.0  2.0  2.0  3.0  2.0 
2.0  3.0  1.0  3.0  1.0  1.0  2.0  3.0 

 
In Andrey Bely’s interpretation the first, second, fourth, sixth, seventh and eighth lines 

are absolutely alike. In each of them the stress is on the second, fourth and eighth syllables. 
The other two lines, the third and the fifth, look different: the stress on the first ictus is 
omitted but it appears on the second and fourth ictuses. So, these eight lines demonstrate two 
varieties of rhythm: one characterizing the six lines, the other variety characterizing the other 
two.  

However, if we carefully consider the rhythm matrix according Potebnya, we shall see 
that the abovementioned text does not contain any lines which are absolutely alike. Now we 
have the opportunity to detect even the slightest differences in the rhythm of this text. 

 
■□ 

 
In order to make further description of Potebnya’s method of rhythm study easier, let us 

introduce the following symbols:  
m – the quantity of the syllables under study 
n – the number of the lines under study 
M – the full quantity of the syllables in the line, the final ictus included 
k – the quantity of the ictuses in the line 
l – the quantity of the weak metrical positions in the line 
N – the full quantity of the lines in the text 
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B – the value of the prominence of the syllable 
Вmn  – the prominence of syllable m in verse n. 
So we get the following rhythm characteristics. The average prominence of each 

syllable in the line: 

1

1 N

m mn
n

B B
N 

 
 

 
The average prominence of all ictuses: 
 

( .)
( .)

1

1 k

ict
ict

B B
k

   

 
The average prominence of all non-ictuses: 

       
( .) ( .)

1

1 l

non ict non ict
B B

l
 

   

 
The next step in our research was suggested by Academician A.N. Kolmogorov. In his 

letter dated 24 June, 1971, A.N. Kolmogorov suggested to me introducing the index which 
became possible to calculate due to my study of the non-ictus prominence. This index re-
presents the difference between the meanings of average prominence of all the ictuses and 
non-ictuses of the text: 

 

       ( .) ( .)ict non ictP B B    
 
This formula reflects not only the peculiarities of the distribution of syllable prominence 

regarding ictuses and non-ictuses, but the average word length as well. More than that, it 
shows the correlation of the average word length in different texts.  The higher the value of P-
index is, the more words the line may contain on the average. P-index, together with average 
prominence of a syllable in a text, is another relevant parameter. High average prominence of 
strong syllabic positions and low average prominence of weak syllabic positions create a 
sharp contrast and, therefore, emphasize the meter.  

These regularities are especially noticeable in the texts which are quite big in volume. 
We systematically studied the rhythm of 442 poems (with a total of 11 282 lines) and a 
number of other poems (Baevskij, V.S. 2001. Ch.8 and other works in the reference). All 
these research studies allow to trace that from the middle of the 18th century to the middle of 
the 20th century; the differential prominence of ictuses and non-ictuses had been gradually 
becoming smaller. Though this index can not serve as the only criterion to make conclusions 
whether the author’s tendency is more of a traditional style or of the innovation, still this 
index is certainly worth considering when studying this subject. 



Rhythmics of Russian verse 
 

9 

Not only average characteristics of the verse rhythm can be studied with the help of the 
method shown in the paper, but the individual characteristics of each line as well. In order to 
obtain them we may calculate the average quadratic deviation (σ) of syllable prominence in 
this line regarding the average prominence of these very syllables in the whole text  

 
 
 
 
  

 
and set up an asymptotic normal test for testing differences.  

The lines with the maximal quadratic deviation are the so-called rhythmic rarities. They 
differ from ideal average rhythm as much as possible; they are evidently characterized by the 
most remarkable rhythmic image. The purpose of careful philological research is to find out 
which role this rhythmic italics play in the semantics of the whole verse. Our observations 
show that the lines which are rhythmically marked are usually extremely significant from the 
point of view of the text message.  
 

■□ 
 
The characteristic of syllable prominence according to the Potebnya effect has a number 

of advantages as compared with the traditional approach, which distinguishes only stressed 
and unstressed syllables. 

1. Potebnya`s method allows to assess the degree of prominence of dynamically 
unstable words that do not entirely fit the binary opposition “stressed vs. unstressed” words. 

2. The researcher has the opportunity to consider and characterize the rhythm of the text 
in a more careful and detailed way. 

3. Quantitative analysis of all the syllables comprising the text allows assessing not only 
the prominence of ictuses but of non-ictuses as well, given that each one is contrasted with all 
the rest. So we are able to see and show the “living life” of non-ictuses in the alternating 
verse. 

 
■□ 

 
The present paper has been written and published in hope that as I have found a friend in 

this generation and I shall find1 a follower in the posterity.   
 
 
Texts 
 
[1] Evtushenko, E.A. Vzmakh ruki. [A Wave of the Hand]. (1962). Moscow: “Molodaia 

gvardiia”.  
[2] Pasternak, B.L. Sestra moia zhizn’. [My Sister, Life]. (1922). Moscow: Izdatel’stvo 

Z.I. Grzhebika.  
 

                                                 
1Here two lines from Baratynsky’s verse are paraphrased:  
                                                                        И как нашел я друга в поколенье, 
                                                                        Читателя найду в потомстве я.  
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Vocabulary Growth of Content Words  
in ESP and General English. 

A Contrastive Study Based on CMTE and SBNC 
 

Zhao Xiaodong1 
School of Foreign Languages 
Dalian Maritime University 

 

Abstract. This paper, based on Corpus of Maritime Transportation English (CMTE) and sampled 
British National Corpus (SBNC), employs FoxPro programs and SPSS analysis to study the dynamic 
growth patterns of words and content words of English for Specific Purposes (ESP) and general 
English at 4000-word intervals. Then it is tested in the paper whether Brunet’s model can provide a 
good fit for the overall vocabulary growth of CMTE and SBNC, and whether this model is fit for 
describing the relationship between the vocabulary of content words and text length with the increase 
of tokens at 4000-word intervals. Lastly, the 95% confidence interval for content words in CMTE and 
general English is calculated. 

Results of the study show that with the increase of cumulative tokens CMTE and SBNC exhibit 
a similar pattern of overall vocabulary increase, and the vocabulary increase curves of content words 
in the two corpora are also quite similar, with nouns increasing more rapidly than other content words. 
The difference is in SBNC overall number of words and content words increase more and more 
rapidly than those of CMTE, which means general English has greater vocabulary sizes of nouns, 
verbs, adjectives and adverbs. In addition, the vocabulary increase rate of SBNC tends to level with 
that of CMTE when the cumulative number of tokens reaches about 680000; the net increase of verbs 
in SBNC tends to slow down after the number of tokens reaches 350000. And in both general English 
and ESP, there is more inter-textual verb repetition, but less inter-textual adjective repetition. SPSS 
regression analyses show that Brunet’s model can capture the vocabulary growth patterns of CMTE 
and the growth patterns of content words in CMTE and SBNC as well, with the determination coef-
ficients (R2) all close to 1.  
 
Keywords: vocabulary growth, Corpus of Maritime Transportation English, content words, 
95% confidence interval 
 
1. Introduction  
 
Many scholars (Altmann & Wagner, 1992; Baayen, 2001; Brunet, 1978; Fan, 2006, 2008a, 
2010; Guiraud, 1954; Herdan, 1964; Köhler & Martináková, 1998; Somers, 1959; Tuldava, 
1995) have studied the relationship between vocabulary and text length. They have either 
designed different quantitative models to describe vocabulary-text relationship, or they have 
tested these models by using different language data. Altenberg (1990), Francis and Kučera 
(1982), Johansson and Hofland (1989) have ever made static analyses of content words by 
calculating the proportions of content words in corpora LLC, Brown and LOB. Yet there are 
few studies on the dynamic vocabulary-text relationship of ESP (English for Specific 
Purposes) or vocabulary growth patterns of content words of general English and ESP. So this 
paper employs a quantitative method to make a dynamic study on the vocabulary growth of 
ESP and growth patterns of content words of ESP and general English at 4000-word intervals. 
                                                 
1 Address correspondence to: dmuzhao@yahoo.com.cn 
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Since Fan’s studies (2006, 2008a), which are based on a large scale of language data, reveal 
that Brunet’s model can provide a very good fit for general English inter-textual vocabulary 
growth, this study also intends to analyse: (1) whether Brunet’s model 
 

   lnNV   (Brunet, 1978) 
 
can capture the vocabulary growth features of ESP too; (2) whether this model can 
appropriately describe the relationship between the vocabulary of content words and text 
length for ESP as well as general English with the increase of tokens at 4000-word intervals. 

Vocabulary growth is examined through the cumulative increase of word types against 
the cumulative increase of tokens. In this paper, vocabulary growth patterns of content words 
– nouns, verbs, adjectives and adverbs – are studied, whereas function words are excluded 
since there are far fewer function words(types), and they may not display an increasing 
pattern. Many linguists have noticed the sensitivity of type/token ratio (TTR) to the number of 
tokens (Guiraud, 1954; Orlov, 1982; Sichel, 1986; Holmes, 1994), and TTR is also calculated 
to measure lexical variation or lexical diversity (Malvern et al, 2004; Read, 2000). There are 
different ways to calculate TTR. Köhler and Galle (1993) employ the formula 

 

N
N
xTTt

TTR
x

x


 ,  

 
Laufer and Nation (1995) and Biber et al. (2000) employ the formula 
 

 100 number of  typesTTR
number of  tokens

  ,  

 
while Baayen (2001) uses  
 

 number of  tokensTTR=
number of  types

.  

 
Scott (1996) devises standardized TTR. This paper uses the formula  
 

 
    
   

cumulative number of typesTTR
cumulative number of tokens

  

 
to work out the TTRs of general English and ESP. Standardized TTR is calculated on a 4,000-
word basis, i.e., TTR = number of types per 4,000 words/4,000. 

In this paper, English word tokens include all forms of English words, letters and 
abbreviations, etc. separated by spaces, but excluding punctuation marks. English word types 
refer to lemma types. That is, different word forms with the same sense, the same word class, 
but different inflections will be categorized into one same lemma type. Under this definition, 
break, breaks, broke, breaking and broken will be grouped into one lemma: break. In the 
process of lemmatization, Arabic numerals, punctuation marks and other non-alphabetic 
characters will all be excluded. In this paper, type and vocabulary have the same sense with 
lemma, and are used interchangeably. 
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 2. Research design and methodologies 
 

In this research Corpus of Maritime Transportation English (hereafter referred to as CMTE) is 
employed. CMTE is a corpus constructed by Dalian Maritime University in 2010. The runn-
ing size of it is 1092258. The source texts of CMTE corpus are authoritative and represent-
ative enough, whose authors are all native English speakers, and most of these authentic texts 
were published in more than 30 maritime English journals or magazines between the year of 
1995 and 2010. The sampled source texts are mostly between 2000 words and 5000 words, 
since according to Biber (1990:261) text samples of 2000 words to 5000 words can represent 
the linguistic characteristics of certain text categories. This corpus contains written English 
texts on marine transportation, covering various domains, such as port facilities, hazardous 
cargo, piracy, maritime logistics, maritime transportation, port transportation, shipping techn-
ology, nautical climate, marine incident investigation report, marine insurance, and various 
conventions, regulations or rules on ship collision, marine pollution, salvage, bills of lading, 
cargo handling, and marine search and rescue, etc. These texts cover various types of vessels, 
such as passenger ships, tankers, ro-ro ships, tugboats, ocean liners, freighters, ferries, fishing 
vessels, cruise ships, container ships, etc. In today’s world economy, two thirds or more of the 
volume of trade is done by means of seaborne transportation. So it is meaningful to study the 
lexical features of CMTE as a kind of ESP. 

The contrast corpus is a sampled corpus of written British National Corpus (BNC). 
First, a FoxPro program is used to remove all the tags in the tagged texts of BNC (written) 
corpus. Then another FoxPro program is used to draw a random sample of 28 texts from BNC 
corpus, with a total number of 1136347 words. Hereafter, the sampled BNC corpus is referred 
to as SBNC. Then the two corpora, CMTE and SBNC, are tagged with POS tags by using 
CLAWS4. A third FoxPro program is used to tokenize the two corpora and extract different 
classes of content words, i.e. nouns, verbs, adjectives and adverbs according to the POS tags, 
then all the tags of part of speech, punctuations, typographic signs and other non-alphabetic 
characters are removed. 

Next, two FoxPro programs are employed to process the cleaned tokenized CMTE and 
SBNC respectively. These programs first randomly divide CMTE into 273 4000-word(token) 
chunks and SBNC into 284 4000-word chunks, then compute the number of word types for 
each 4000-word chunk, the cumulative number of word types, word tokens, as well as the 
TTR, standardized TTR, net increase of types, and the vocabulary growth data of four categ-
ories of content words at 4000-word intervals.      

Finally, SPSS (16.0) is employed to test the fit of Brunet’s model for the vocabulary 
growth of total number of words as well as that of content words in the two corpora. 
 
 
3. Results and analysis 
 
3.1 Vocabulary growth rates of SBNC and CMTE 
 
Results show that the total number of vocabulary for the 284 SBNC chunks and 273 CMTE 
chunks is 37739 and 34566 respectively. The average number of vocabulary for each chunk is 
1598 and 1567 respectively, which indicates on average a text of 4000 words in general 
English produces about 30 more word types than ESP. The mean standardized TTR for SBNC 
is 0.3995, and CMTE 0.3919, which indicates that SBNC has a greater lexical diversity than 
CMTE. This is testified by curves in Figure 1 below.  
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Figure 1. Left: TTR decrease curves before 20000 word tokens with the minimum scale of Y-axis set 
to 0.22, and maximum 0.40. The solid line is the decrease curve of SBNC, the dotted line CMTE.  
Right: TTR decrease curves from 24000 word tokens downwards, with the minimum and maximum 
scales of Y-axis set to 0.03 and 0.17 respectively. The solid line is the decrease curve of SBNC, the 
dotted line CMTE. 

 
Figure 1 shows that TTR curves of the two corpora both display a declining pattern. The 

decrease curve of SBNC has always been above that of CMTE and there has never been a 
touch point or cross point for the two curves. This suggests that the lexical diversity of SBNC 
has always been greater than that of CMTE. 

Figure 2 is the growth curve of overall word types. 
 

 
Figure 2 Left: growth curves of word types. The solid line is the growth curve of SBNC, the dotted 
line CMTE. Right: scatter plot of vocabulary increase differences between SBNC and CMTE.  
  
Figure 2 (Left) shows that word types in SBNC and CMTE present a similar growth pattern: 
word types keep increasing until the end of the curves with the increase of cumulative tokens. 
Both of the curves rise sharply at the initial stage. Yet with the increase of tokens, the growth 
rate of types gradually slows down. This finding is similar to those research findings made by 
Baayen (2001) and Fan (2008a, 2008b, 2010). Despite the similarities, there are also obvious 
differences between the two curves: the growth curve of SBNC word types has always been 
above that of CMTE. This means for any text of similar size, general English has a larger 
vocabulary than ESP. In order to detect how larger the cumulative vocabulary of SBNC is 
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than that of CMTE, we calculate the vocabulary differences for each pair of chunks (alto-
gether 273 pairs of chunks) by subtracting the cumulative vocabulary number of CMTE from 
that of SBNC, the results of which are shown in Figure 2(Right). Figure 2(Right) gives a 
dynamic description of vocabulary differences between SBNC and CMTE with the increase 
of cumulative number of tokens. It shows that vocabulary differences between SBNC and 
CMTE fall between 0 to about 2500. With the increase of tokens, the value of differences 
becomes bigger and bigger, and it reaches a high point (about 2400) when the number of 
tokens reaches about 680000 and maintains at that level with minor fluctuations. That means, 
SBNC vocabulary increases more and more rapidly than does CMTE vocabulary, but from 
680000 word tokens downwards, the growth rate of SBNC tends to level with that CMTE. 

To take a closer look at the difference of vocabulary increase between SBNC and 
CMTE, we can examine the net increase of types for the 284 chunks of SBNC and 273 
chunks of CMTE, as is shown in Figure 3 (Left). Figure 3 (Left) shows that with the increase 
of cumulative number of tokens, the net increases of types in those chunks of the two corpora 
both experience a sharp-slow decrease. In order to have a detailed account of the differences 
between the net increase of SBNC and CMTE, we work out the differences of net increase for 
each pair of chunks by subtracting the number of net increase in CMTE from that of SBNC, 
as is shown in the following scatter plot, Figure 3 (Right). 

 

 
Figure 3 Left: decrease curves of net increase of types. The dotted line is the net increase of types in 
CMTE, the solid line SBNC. Right: differences of net increase between SBNC and CMTE for 273 
pairs of chunks. 
 
From Figure 3 (Right), we can find that the differences of net increase between SBNC and 
CMTE for 273 pairs of chunks mostly lie between -25 to 40, with SBNC taking the majority 
of larger values and the range of fluctuation being not so wide. 
 
3.2. Vocabulary growth of content words  
 
In both SBNC and CMTE, four types of content words exhibit similar growth patterns: nouns 
increase more sharply than adjectives, verbs and adverbs, indicating that in the two corpora 
the majority of vocabulary goes to nouns. The growth rate of adjectives ranks second, that of 
verbs ranks third, and adverbs the last. It also shows (see Figure 4) that there are far fewer 
verb types and adverb types 4. The growth curves of adverbs in the two corpora tend to level 
with the axis, which indicates that adverbs keep a steady increase in small amount. 
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Figure 4. Left: growth curves of content words in SBNC. Curves from top to bottom are noun growth, 
adjective growth, verb growth and adverb growth. Right: growth curves of content words in CMTE. 
Curves from top to bottom are noun growth, adjective growth, verb growth and adverb growth. 

 
Another difference is that content words in SBNC seem to increase more rapidly than 

those of CMTE. In order to verify this, we can compute the vocabulary differences of content 
words for each pair of chunks between SBNC and CMTE by subtracting the cumulative 
number of content words(types) in CMTE from that of SBNC with the increase of cumulative 
tokens, the result of which is shown in Figure 5. 

 

 

 
Figure 5. Vocabulary differences of content words for each pair of chunks between SBNC and 
CMTE with the increase of cumulative tokens. 
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Figure 5 shows that vocabulary differences of nouns, adjectives and adverbs between SBNC 
and CMTE all undergo a dynamic increasing pattern with the increase of cumulative number 
of tokens. And these values of differences are mostly positive  and become bigger and bigger, 
with noun differences between 0-4000, verb differences between -25 to 150, adjectives about 
0-1200, adverbs about 0-360. This suggests that in sampled BNC vocabularies of content 
words all go through a more and more rapid increase than those in CMTE. The exception is 
that the curve of verb differences between SBNC and CMTE undergoes an upside-down v-
turn, with the apex stopping at 150 when the cumulative number of tokens reaches about 
350000. After observing the data, we find this is mainly due to the slowdown of net increase 
of verbs in SBNC and greater net increase of verbs in CMTE. This means in SBNC the 
increase of verbs is limited after the cumulative number of tokens reaches 350000. 

Features of the vocabulary growth of content words can also be clearly shown from the 
decrease curves of the net increase of content words in the two corpora (see Figure 6). 

 

 
Figure 6. Left: decrease curves of the net increase of content word types in SBNC. Curves from top to 
bottom are net increases of nouns, adjectives, verbs and adverbs. Right: decrease curves of the net 
increase of content word types in CMTE. Curves from top to bottom are net increases of nouns, 
adjectives, verbs and adverbs. 
 
 
Figure 6 shows that nouns have greater net increase from the initial stage to about 500000 
cumulative word tokens. The decrease curves of the other 3 kinds of content words run very 
close. In other words, the vocabulary growth rates of adjectives, verbs and adverbs are much 
slower, with the decrease curves of adverbs roughly falling flat from almost the initial stage. 
 
 
3.3. Fit of Brunet’s model to the vocabulary growth of CMTE and content words in the 

two corpora 
 
Based on the observed data – the cumulative number of types in the two corpora, this paper 
employs SPSS regression analysis to work out Brunet’s model’s estimated values of SBNC 
and CMTE vocabulary growth at a 4000-word interval, and then the fitted curves are plotted, 
as shown in Figure 7. In addition, coefficients of determination (R2) for the two corpora are 
also obtained through SPSS analysis. 
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Figure 7. Fit of Brunet’s model to SBNC and CMTE. The upper solid line is the growth curve of types 
for observed SBNC, the upper dotted line Brunet’s model fit for SBNC. The lower solid line is the 
growth curve of types for observed CMTE, the lower dotted line Brunet’s model fit for CMTE.  

 
 

Figure 7 shows that Brunet’s model provides a very good fit for the observed vocabulary 
growth of the two corpora. In regression analysis, R2 is often used to test the fit of regression 
model to observed data, and the larger the coefficient of determination, the more adequate the 
model is. R2 of Brunet’s model for observed SBNC and CMTE is respectively 0.999960 and 
0.999737, which indicates that Brunet’s model can accurately reflect the vocabulary growth 
of SBNC and CMTE. 

Next, the fit of Brunet’s model to the vocabulary growth of content words in the two 
corpora is analyzed. Figure 8 shows the fitted curves for nouns and verbs in SBNC and 
CMTE. 

 

 
Figure 8. Left: fit of Brunet’s model to increase of nouns. The upper solid line is the growth curve of 
nouns for observed SBNC, the upper dotted line Brunet’s model fit for SBNC nouns. The lower solid 
line is the growth curve of nouns for observed CMTE, the lower dotted line Brunet’s model fit for 
CMTE nouns. R2 for SBNC = 0.999945; R2 for CMTE = 0.999955. Right: fit of Brunet’s model to in-
crease of verbs. The upper solid line is the growth curve of verbs for observed SBNC, the upper dotted 
line Brunet’s model fit for SBNC verbs. The lower solid line is the growth curve of verbs for observed 
CMTE, the lower dotted line Brunet’s model fit for CMTE verbs. R2 for SBNC = 0.999679; R2 for 
CMTE = 0.999805. 

 
Figure 8 shows that Brunet’s model provides a perfect fit for the vocabulary growth of nouns 
and verbs in both SBNC and CMTE. The coefficient of determination (R2) of Brunet’s model 
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for observed SBNC and CMTE nouns is 0.999945 and 0.999955 respectively, for observed 
SBNC and CMTE verbs, 0.999679 and 0.999805 respectively. The following figure (Figure 9) 
shows the fit curves for adjectives and adverbs in SBNC and CMTE. 

 

 
Figure 9. Left: fit of Brunet’s model to increase of adjectives. The upper solid line is the growth curve 
of adjectives for observed SBNC, the upper dotted line Brunet’s model fit for SBNC adjectives. The 
lower solid line is the growth curve of adjectives for observed CMTE, the lower dotted line Brunet’s 
model fit for CMTE adjectives. R2 for SBNC = 0.999889; R2 for CMTE = 0.999900. Right: fit of 
Brunet’s model to increase of adverbs. The upper solid line is the growth curve of adverbs for 
observed SBNC, the upper dotted line Brunet’s model fit for SBNC adverbs. The lower solid line is 
the growth curve of adverbs for observed CMTE, the lower dotted line Brunet’s model fit for CMTE 
adverbs. R2 for SBNC = 0.999060; R2 for CMTE=0.999143. 
 
Figure 9 shows that predicted adjective and adverb values of Brunet’s model match those 
observed values of adjectives and adverbs very well in both SBNC and CMTE. For the 
increase of adverbs, although coefficients of determination of Brunet’s model for observed 
data of the two corpora are both close to 1, the fit curves are the least perfect of all the four 
types of content words. 
 
 
3.4. Calculation of content words in a text at 95% confidence level 
 
We employ the following formula for tolerance interval: 
 
 Tolerance Interval = mean ± (tolerance critical value)*S     (Devore, 2000) 
 
to capture 95% of all the possible values of the vocabulary sizes in texts of about 4000 words. 
Significance of doing this is that it enables us to predict the numbers of content words in both 
general English and ESP (CMTE). 

In the formula, mean stands for the average number of types in those 4000-word chunks 
for each kind of content words; tolerance critical value is also a given value, which is 
determined by the number of observed values and the percentage of all such possible values 
the tolerance interval intends to include. S is the standard deviation of a set of normally 
distributed values.  

By using SPSS, we can work out the means and standard deviations for nouns, verbs, 
adjectives and adverbs for those 4000-word chunks in the two corpora, the result of which is 
shown in Table 1. At the same time, the vocabulary distribution histograms of four types of 
content words can be drafted. 
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Table 1 
Means and standard deviations for four types of content words 

 
Corpus Statistics Nouns Verbs Adjectives Adverbs 

Mean 851 284 245 118 SBNC 
Std. Dev. 21.024 11.904 13.473 7.473 
Mean 823 282 245 107 CMTE 

 Std. Dev. 21.742 12.225 12.697 7.443 
   
Observing the table, we may find that the means of verbs in the two corpora are higher than 
those of adjectives, or in other words, for each text of 4000 words, there are more verb types 
than adjective types. This is contradictory to the cumulative increase of content words, where 
the cumulative number of adjectives is always higher than that of verbs with the cumulative 
increase of tokens (cf. Figure 4). This suggests that in both general English and ESP, there is 
more inter-textual verb repetition, but less inter-textual adjective repetition. 

The vocabulary distribution histograms of four types of content words are as follows: 

        
            SBNC noun distribution           SBNC verb distribution   SBNC adjective distribution 

 
        SBNC adverb distribution    CMTE noun distribution   CMTE verb distribution 

  
    CMTE adjective distribution   CMTE adverb distribution 

 
Figure 10. Vocabulary distribution histograms of content words in SBNC and CMTE 
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Figure 10 shows that nouns, verbs, adjectives and adverbs are all normally distributed in those 
4000-word chunks in the two corpora. Then the one-sample Kolmogorov-Smirnov Test is 
used to test if the vocabulary distributions of content words in the two corpora are normally 
distributed. Results show that Kolmogorov-Smirnov Z values for nouns, verbs, adjectives and 
adverbs in CMTE and SBNC are 0.577, 0.661, 0.884, 1.163 and 0.673, 1.012, 0.630, 0.960. 
The asymptotic significance (2-tailed) values are 0.893, 0.775, 0.416, 0.134 and 0.755, 0.257, 
0.822, 0.315 respectively, which are all greater than 0.05. So statistical analyses also show 
that nouns, verbs, adjectives and adverbs are all normally distributed in the two corpora. 

To capture 95% of all the possible values of a normally distributed population at the 
95% confidence level, the tolerance value is 1.96 for the number of observed values bigger 
than 120 (Butler, 172). Therefore, we can estimate the upper bounds and lower bounds of the 
vocabulary size of different content words in texts whose sizes are about 4000 word tokens. 
Based on the statistics in Table 1 and the given value of tolerance critical value, the 95% 
confidence interval for distribution of content words in SBNC and CMTE can be worked out 
(Table 2). 

 
Table 2 

95% confidence intervals for content words 
 

Estimated Vocabulary Intervals Nouns Verbs Adjectives Adverbs 
Upper bounds 892 307 271 133 SBNC 
Lower bounds 810 261 219 103 
Upper bounds 866 306 270 122 CMTE 

 Lower bounds 780 258 220 92 
   
So for general English, there is a 95% probability that 95% of the nouns of a text of about 
4000 words will lie between 810 and 892; for verbs, between 261 and 307; adjectives, 
between 219 and 271; adverbs, 103 and 133. For CMTE, there is a 95% probability that 95% 
of the nouns of a text of about 4000 words will lie between 780 and 866; for verbs, between 
258 and 306; adjectives, between 220 and 270; adverbs, 92 and 122. 

The significance of these findings is that by using the same method, we can predict the 
vocabulary of content words in texts of different sizes, such as texts of about 1000 words or 
2000 words, etc. 

Since the number of function words is limited, the complexity and diversity of a text 
mainly depends on the vocabulary or the number of content words, we can estimate the size 
of content words (types) of a text, predicting the lexical diversity of different types of content 
words of a certain text. This is very important in textbook compilation and choice of reading 
materials for students of different levels. Or in other words, in the choice of materials, the 
vocabulary sizes of content words for a text of certain size should fall within the lower bounds 
and upper bounds. It can also be used to assess language learners’ English proficiency --- the 
acquisition of different types of content words in second language learners’ written or spoken 
English, that is, to find how much difference there is between English language learners and 
native speakers with respect to the number of content words used. It is also applicable to text 
categorization or authorship attribution, according to which we can calculate numbers of 
nouns, verbs, adjectives and adverbs in chunks of different texts and pick out each kind of 
content words used by the author. 
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4. Conclusion  
 

This study finds that the overall vocabulary increase and the vocabulary increase of content 
words in CMTE display a very similar pattern to those of general English, SBNC. The dif-
ference is that the overall number of words and content words in general English increase 
more and more rapidly than those of CMTE, which indicates general English has greater 
vocabulary sizes of nouns, verbs, adjectives and adverbs. In addition, the vocabulary increase 
rate of SBNC tends to level with that of CMTE when the cumulative number of tokens 
reaches about 680000; CMTE verbs experience greater net increase than do general English 
verbs after the number of tokens reaches 350000. And majority of vocabulary in the two 
corpora goes to nouns. In both general English and ESP, there is more inter-textual verb 
repetition, but less inter-textual adjective repetition. SPSS regression analysis shows that 
Brunet’s model can capture the vocabulary growth of both general English and ESP very 
well, and this model also provides a perfect fit for the vocabulary growth of content words in 
both SBNC and CMTE. According to the analysis of content words of a text at 95% 
confidence level, we find that the estimated number of nouns in CMTE is smaller than that of 
SBNC, whereas the estimated numbers of verbs in the two corpora are similar, so are 
adjectives and adverbs. 
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Stratification in musical texts 
based on rank-frequency distribution of tone pitches1 

 
Ioan-Iovitz Popescu 

Zuzana Martináková-Rendeková 
Gabriel Altmann 

 
Abstract. In this study we investigate the stratification in musical texts based on rank-frequency 
distribution of tone pitches. Preliminary investigations show that there are some similarities between 
music and language and that pitches play the same semiotic role as phonemes or graphemes, 
occupying approximately the same “corridor” in the ternary plot. In this case we try to  apply the 
stratificational approach and to investigate possible strata composed of pitches having different 
functions.   
 
Key-Words: stratification, self-regulation, musical texts, rank-frequency distribution, tone 
pitch 

 
 
1. Introduction 
 
Stratification is a common phenomenon in nature and culture. Homogeneity is always only 
partial or something perceived from a certain point of view. Real things consist of different 
elements and different subsystems. This holds for the most abstract human creation like 
language or arts down to the subatomic world. However, in many cases analysis is possible 
only if we suppose homogeneity or stipulate the ceteris paribus condition. Advance in re-
search means in many cases the stepwise relaxing of the homogeneity condition and admitting 
further variables. 
 In language, we speak of a homogeneous text if it has been written by one author, does 
not contain different parts, in the best case it has been written in one go, without any pause, 
and has not been corrected subsequently. Evidently, texts of this kind are very seldom, the 
best examples are letters. But even if they exist, homogeneity has different faces. And even if 
in a certain sense they are homogeneous, we nevertheless discover strata of units which 
behave differently. The best example is the frequency of words which can be (fuzzily) parti-
tioned in “meaning-words” and “auxiliaries” both having quite different frequencies. But even 
meaning-words themselves can be subdivided in “nominals” and predicates of different order. 
If we rank them all together according to frequency, we put up with the fact that we mix at 
least two different strata controlled by two different frequency regimes. This is why B. 
Mandelbrot corrected Zipf´s approach but was himself “corrected” many times in the history: 
some formulas improve the fitting at the beginning of the rank sequence but impair it at the 
tail of the sequence or vice versa. Still worse is the case when the empirical ranking sequence 
is not smooth as a whole – though monotonously decreasing – and the fitting gets weaker. 
Another problem is the fact that the traditional formulas can be derived also from the 
assumption of randomness of texts (ape typing) without involving any kind of economy. 

                                                 
1 A short summary of the article appeared in: Proceedings of the 10th WSEAS International Con-
ference on Acoustics and Music: Theory and Applications, Prague, March 2009, pp. 116-119.  
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 In musical texts – except monophonic2 compositions or compositions for one voice or 
one instrument – the text is clearly stratified in polyphonic3 or homophonic4 compositions. If 
we then rank the frequencies of pitches, we possibly obtain a good result using some special 
case of the Lerch function (encompassing the Zipf and Zipf-Mandelbrot formulas) but this 
need not always be the case. Besides, Zipf´s ranking approach does not yield an explanation 
of linguistic facts, and Mandelbrot´s approach is restricted to linguistics (where it can be 
obtained also for random texts), hence the transfer to music is made per analogiam in spite of 
very different empirical entities. In cases like this, one tries to find other ways which would 
yield at least as good fitting as the Zipf-Mandelbrot approach but at the same time bring a 
kind of explanation. We shall show two such possibilities. 
 
 
2. Up-and-down self-regulation 
 
The great majority of linguistic distributions is based on the assumption that if frequencies are 
ranked, the probability of class x is proportional to that of x-1. The proportionality need not be 
constant, it may be a function of x. Thus we obtain 
 
(1) 1( )x xP g x P  . 
 
Writing Px-1 in the same way, we obtain at last 

(2) 0
1

( )
x

x
i

P P g i


   

or for ranking from x = 1 
 

(2a) 1
2

( )
x

x
i

P P g i


   

 
which is being sufficient in most cases. Hence the most frequent pitch in music (x = 0 or x = 
1) controls the other ones. But in a musical composition the key may change and we obtain as 
many layers as there are key changes. By changing the key both the frequencies of pitches and 
their ranks get in disorder and the simple control by the smaller ranks (or the smallest rank) is 
not sufficient. In order to avoid this restriction, Wimmer proposed the use of partial-sums 
distributions in which the lower ranks are controlled by higher ranks (cf. Wimmer, Šidlík, 
Altmann 1999, Wimmer, Altmann 2000, 2001). This is a very extensive family of distribu-
tions and practically every distribution can be used for this purpose in different forms. A 
survey of forms can be found in Johnson, Kotz, Kemp (1992). But even if here a kind of 
different control becomes effective, the possible stratification is not expressed. 
 
 
 

                                                 
2 Monophony in music is the simplest of textures consisting of melody (one note at a time or the same 
note duplicated or multiplicated at one or more octaves – unisono) without accompanying harmony. 
3 Polyphony in music is a texture consisting of two or more independent melodic voices. 
4 Homophony in music is a texture in which two or more parts move together in harmony and the 
relationship between them creates chords. 
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3. Simple stratification 
 
Here we shall restrict ourselves to possible strata composed of pitches having different func-
tions. However, ranking the pitches according to their frequency means a mixing of strata, an 
inserting one stratum into another. In some kinds of music a stratum can be fully dependent 
on another, whereby their number gets reduced; in other kinds of music the voices are so 
independent that there are several ranked strata.  
 All ranking of frequencies goes back to G.K. Zipf (1935) who conjectured that  f  r = 
C (frequency times rank is constant). Later on an exponent has been added leading to a power 
curve which disseminated to many scientific disciplines and holds true for the great majority 
of linguistic rank-frequency data. Its corrections are cosmetic improvements for individual 
data (e.g. C/(a+x)b, C/(a+x)f(b,x), Cqx/(a+x)b,…) but in spite of the fact that all of them can be 
derived from different assumptions, they do not have a linguistic foundation. But if Zipf´s 
approach is valid and ranking is something inherent to linguistic data, there is a possibility to 
start from a still simpler assumption. The power curve is given by the differential equation 
y´/y = -a/x, but if there are strata in texts, one can take very generally y´/y = -a, yielding y = 
Ae-ax and attain a look at the strata by adding analogous components, i.e. y = Ae-ax + Be-bx… 
Alternatively, the result follows from a differential equation of first order. This approach has 
been proposed as an alternative to Zipf´s approach (cf. Popescu, Altmann, Köhler 2009) and 
can be applied to the study of musical texts. The above sum is a sum of geometric sequences, 
since e-ax can be written as qx but we shall use the following exponential form of writing 
 

(3)  31 2 // /
1 2 31 v rx r x ry Ae A e A e      

 
Now, consider the rank-frequency of pitches in Palestrina´s work Pls05  Missa Ascendo ad 
Patrem, 5. Movement Sanctus in which there are 23 different pitches occurring 595 times 
(Table 1). Considering it a geometric series we apply the first exponential component of (1) 
and obtain the result given in the third column of Table 1.  

 
Table 1 

Rank-frequency of pitches in Palestrina’s Pls05I   
Missa Ascendo ad Patrem, 5. Sanctus 

 
x fx One component 
1 70 77.29 
2 69 67.85 
3 64 59.57 
4 56 52.32 
5 45 45.96 
6 42 40.40 
7 34 35.52 
8 33 31.24 
9 30 27.50 
10 26 24.22 
11 22 21.34 
12 20 18.83 
13 18 16.62 
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14 16 14.68 
15 11 12.99 
16 10 11.51 
17 9 10.20 
18 9 9.07 
19 4 8.07 
20 2 7.19 
21 2 6.42 
22 2 5.75 
23 1 5.16 

 
Here, the determination coefficient is R2 = 0,9806 and the parameters are the unique range r1 
= r2 = r3 = 7.57 and the cumulated amplitude A1 + A2

 + A3 = 3(29.02), as it results from the 
first position of Table 2. Now, taking two exponential components of (1) we shall state that 
the fitting does not change, the parameters of both components are identical and R2 is the 
same. Even if we add a third exponential component, nothing changes. At this point we can 
conclude that the given composition is monostratal, as graphically illustrated in Figure 1. 

 
Figure 1. Fitting one exponential component to a work of Palestrina 

 
 
Now, if we perform the same operations with 30 works of Palestrina that stay at our disposal, 
we shall state that all of them display this property: they are monostratal in the distribution of 
pitches as can be seen in Table 2. Here we computed the possibility of a composition having 
three strata, according to (1). As can be seen, the second and the third stratum are identical 
with the first. The procedure is as a matter of fact a test of stratification.  
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Table 2 
The monostratal structure of 30 Palestrina´s works. 

Ranking by R2 
 

ID Text  A1 r1 A2 r2 A3 r3 R2 

Pls05 
Missa Ascendo ad Patrem, 
Sanctus 29.02 7.57 29.02 7.57 29.02 7.57 0.9806 

Pls20 
Missa Papae Marchelli,  
4. Sanctus 52.27 7.52 52.27 7.52 52.27 7.52 0.9787 

Pls28 
Missa Veni Sponsa Christi,  
5. Benedictus 30.67 6.87 30.67 6.87 30.67 6.87 0.9782 

Pls19 
Missa Papae Marchelli  
3. Credo 113.44 7.95 113.44 7.95 113.44 7.95 0.9777 

Pls22 
Missa Papae Marchelli  
6. Agnus Dei I 34.58 7.56 34.58 7.56 34.58 7.56 0.9776 

Pls18 
Missa Papae Marchelli  
2. Gloria 68.79 7.80 68.79 7.80 68.79 7.80 0.9731 

Pls07 
Missa Ascendo ad Patrem  
7. Agnus Dei I 19.94 7.76 19.94 7.76 19.94 7.76 0.9711 

Pls17 
Missa Papae Marchelli  
1. Kyrie 49.99 7.54 49.99 7.54 49.99 7.54 0.9698 

Pls21 
Missa Papae Marchelli 
5. Benedictus  32.45 7.38 32.45 7.38 32.45 7.38 0.9665 

Pls02 
Missa Ascendo ad Patrem  
2. Kyrie 40.46 8.34 40.46 8.34 40.46 8.34 0.9644 

Pls03 
Missa Ascendo ad Patrem  
3. Gloria 58.61 8.69 58.61 8.69 58.61 8.69 0.9608 

Pls01 
Missa Ascendo ad Patrem  
1. Motet 80.49 8.75 80.49 8.75 80.49 8.75 0.9605 

Pls24 
Missa Veni Sponsa Christi 
1. Kyrie 29.96 8.29 29.96 8.29 29.96 8.29 0.9600 

Pls08 
Missa Ascendo ad Patrem  
8. Agnus Dei II 21.18 8.55 21.18 8.55 21.18 8.55 0.9592 

Pls10 
Missa Ave Regina Coelorum 
2. Kyrie 29.43 8.87 29.43 8.87 29.43 8.87 0.9578 

Pls26 
Missa Veni Sponsa Christi 
3. Credo 66.88 9.20 66.88 9.20 66.88 9.21 0.9556 

Pls12 
Missa Ave Regina Coelorum 
4. Credo 103.41 8.69 103.41 8.69 103.41 8.69 0.9550 

Pls13 
Missa Ave Regina Coelorum 
5.Sanctus 18.50 8.96 18.50 8.96 18.50 8.96 0.9542 

Pls25 
Missa Veni Sponsa Christi 
2. Gloria 44.21 8.67 44.21 8.67 44.21 8.67 0.9525 

Pls29 
Missa Veni Sponsa Christi 
6. Agnus Dei I 15.65 7.99 15.65 7.99 15.65 7.99 0.9510 

Pls09 
Missa Ave Regina Coelorum 
1. Chant 55.26 2.52 5.01 2.52 5.01 2.52 0.9487 

Pls06 
Missa Ascendo ad Patrem  
6. Benedictus 26.55 7.91 26.55 7.91 26.55 7.91 0.9481 
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Pls27 
Missa Veni Sponsa Christi 
4. Sanctus  32.19 8.43 32.19 8.43 32.19 8.43 0.9472 

Pls11 
Missa Ave Regina Coelorum 
3. Gloria 58.83 8.83 58.83 8.83 58.83 8.83 0.9445 

Pls16 
Missa Ave Regina Coelorum 
8. Agnus Dei II 17.80 8.42 17.80 8.42 17.80 8.42 0.9423 

Pls04 
Missa Ascendo ad Patrem  
4. Credo 90.66 8.92 90.66 8.92 90.66 8.92 0.9396 

Pls30 
Missa Veni Sponsa Christi 
7. Agnus Dei II  16.48 9.39 16.48 9.39 16.48 9.39 0.9373 

Pls14 
Missa Ave Regina Coelorum 
6. Benedictus 22.13 8.67 22.13 8.67 22.13 8.67 0.9304 

Pls23 
Missa Papae Marchelli  
7. Agnus Dei II  32.77 9.22 32.77 9.22 32.77 9.22 0.9104 

Pls15 
Missa Ave Regina Coelorum 
7. Agnus Dei I 13.79 11.52 13.79 11.52 13.79 11.52 0.9032 

 
 

Let us consider now F. Liszt whose music differs from that of Palestrina not only because of 
the time gap between the composers. We compute always three components of the formula 
and comparing the parameters in the exponents we can draw conclusions about the stratific-
ation. The results are presented in Table 3. There are 7 monostratal compositions, 7 bistratal 
and 1 tristratal. 

 
Table 3 

Stratification of some compositions of F. Liszt 
 

ID Text  A1 r1 A2 r2 A3 r3 R2 
Liszt13 Liebesträume No. 3 69.47 2.29 43.87 20.64 43.5420.64 0.9935

Liszt02 
Paganini Capriccio No.3 
 La Campanella  424.66 1.67 95.11 21.90 86.6221.90 0.9919

Liszt10 Hungarian Dance 5 44383.75 0.13 61.32 15.24 59.6415.21 0.9909
Liszt12 Hungarian Rhapsody 68.84 2.49 31.23 13.86 27.3313.86 0.9909
Liszt05 Venezia e Napoli: 1. Gondoliera 112546.76 0.13 96.80 6.05 148.8915.94 0.9893
Liszt09 Hungarian Dance 1 55.0017.62 55.00 17.62 55.0017.62 0.9875
Liszt01 Concert Etude No.3: Un Sospiro 83.71 2.00 46.10 18.21 30.4418.21 0.9874
Liszt14 Valse Oublieé No.1 113.16 1.00 48.16 19.17 48.1419.17 0.9870
Liszt11 Hungarian Dance 6 102.26 1.98 89.20 18.04 83.8118.04 0.9813
Liszt07 Venezia e Napoli: 3. Tarantella 104.8126.47 104.81 26.47 104.8126.47 0.9783
Liszt06 Venezia e Napoli: 2. Canzone  56.1413.98 56.14 13.98 56.1413.98 0.9740
Liszt15 Valse Oublieé No.2 77.1019.19 77.10 19.19 77.1019.19 0.9720
Liszt03 Transcendental Etudes: Eroica 34.4231.81 34.42 31.81 34.4231.81 0.9710

Liszt04 
Transcendental Etudes:  
Feux Follets 74.2320.90 74.23 20.90 74.2320.90 0.9688

Liszt08 Sonata B minor 168.8235.86 168.82 35.86 168.8235.86 0.9607
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Figure 2. Fitting two exponential components to a work of Liszt 

 
Figure 3. Fitting three exponential components to a work of Liszt 
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The analysis of different composers showed a rather variegated result given in Table 4. 
 

Table 4 
Strata with individual composers 

 
Composer Mean year monostratal 

compositions 
bistratal  

compositions 
tristratal  

compositions 
Palestrina (1525-1594) 1560 30 0 0 
Gesualdo (1560/1-1613) 1587 5 2 0 
Monteverdi (1567-1643) 1605 9 1 0 
Bach (1685-1750) 1718 47 1 0 
Mozart (1756-1791) 1774 8 0 1 
Beethoven (1770-1827) 1799 17 15 0 
Schumann (1810-1856) 1833 5 10 0 
Wagner  (1813-1883) 1848 2 1 0 
Liszt (1811-1886) 1849 7 7 1 
Skrjabin (1872-1915) 1894 14 11 1 
Schoenberg (1874-1951) 1913 13 4 0 
Stravinsky (1882-1971) 1927 12 13 0 
Shostakovich(1906-1975) 1940 34 15 2 

 
 
We considered only composers from whom we had at least 7 compositions As can be seen, 
out of 13 composers only 4 have tristratal works but the second stratum is present with 11 
composers.  
 In order to compare the composers we set up a normalized vector [x, y, z] containing 
the proportion of compositions with 1, 2, and 3 strata. We obtain 
 
 Palestrina = [1, 0, 0] 
 Gesualdo = [0.71, 0.29, 0] 
 Monteverdi = [0.90, 0.10, 0] 
 Bach  = [0.98, 0.02, 0] 
 Mozart  = [0.89, 0, 0.11] 
 Beethoven = [0.53, 0.47, 0] 
 Schumann = [0.33, 0.67, 0]        
 Wagner = [0.67, 0.33, 0] 

Liszt  = [0.47, 0.47, 0.07] 
 Skrjabin = [0.54, 0.42, 0.04] 
 Schoenberg = [0.76, 0.24, 0] 
 Stravinsky = [0.48, 0.52, 0] 
 Shostakovich = [0.67, 0.29, 0.04] 
 
where x + y + z = 1. Due to this latter condition it is enough to investigate the (x, y) plot of the 
monostratal to bistratal proportion, as presented in Figure 4.  
 This result shows a peculiar picture: there are two classes of composers namely  
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 {Palestrina, Monteverdi, Bach, Mozart} and  
 {Gesualdo, Beethoven, Schumann, Wagner, Liszt, Skrjabin, Schoenberg, Stravinsky, 
Shostakovich}.  
 
 It seems to be logical also from the musicological point of view: composers placed in 
the first class – Palestrina, Monteverdi, Bach and Mozart – wrote diatonic music, using the 
selection of the tone pitches.  
 On the other hand, composers placed in the second class – Gesualdo, Beethoven, 
Schumann, Wagner, Liszt, Skrjabin, Schoenberg, Stravinsky and Shostakovich – wrote more 
chromatic music using often chromatizations and all 12 tone pitches in their works. 

 
Figure 4. Monostratal to bistratal proportions for 13 composers 

 
 
 However, the results are not yet persuading because we have a small number of 
analysed works and the number of composers is not yet sufficient. 
 But in general, in the history of music, two main groups of compositions seem to 
alternate: the first is based on diatonic and the second on chromatic music.  
 In any case, this aspect can be examined easily by means of the above mentioned 
procedure. At the same time the result shows that in music and in language this formal aspect 
displays a kind of analogy. In language, stratification is a quite usual process because all 
classifications of entities are fuzzy and in text different classes are mixed. In music, 
stratification is caused not only by using several voices but also by stylistic preferences of 
individual composers. Looking at Figure 3 we see that there are pitches not lying in the 
direction of the exponential function, and there are also empty intervals of empirical values 
between two ranks. The thorough study of individual works could show us the stylistic 
means causing these “irregularities” Here we were interested only in discovering the general 
existence of stratification, individual analyses are left as future tasks. 
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4. The U-vector 
 
Every rank-frequency distribution has several remarkable points which can serve both for 
characterization of individual works, genres or epochs and for testing a very general regularity 
which is known also from linguistics (cf. Popescu et al. 2010). In linguistics, these quantities 
are the inventory (vocabulary) of the entities used, V, the frequency of the most frequent unit, 
f1, and the arc joining f1 and V whose length is L. Though the rank-frequency sequence is 
usually very regular and the arc length L increases with increasing f1 and V, it need not be 
constant for two texts with the same f1 and V.  Hence a text can be characterized by the vector 
 
(4) U(V, f1, L) 
 
where L is the sum of the usual Euclidian distances between individual frequencies ordered in 
“one-step” distance., i.e. 
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Since both in music and in linguistics, the components of the vector U are variables, for 
further treatment it is advantageous to normalize them in some way. However, the upper 
boundaries of the components are unknown and one must restrict oneself to the given sample 
of texts and use the empirical minima and maxima of the components. The components will 
be normalized in the following way: 
 

(6) 1 1,

max 1, 1,

= ,  =  , Z .minmin min

min max min max min

f fV V L LX Y
V V f f L L

 


  
 

 
and finally  
 

(7) , ,X Y Zx y z
X +Y + Z X +Y + Z X +Y + Z

   . 

  
 In our data presented in Table 5, the minima and the maxima of the individual com-
ponents are as follows: 

 
  Vmin  = 23 (Palestrina05);  Vmax  =    85 (Ligeti02) 
  f1,min =   9 (Wagner02); f1,max = 1002 (Mozart05) 
  Lmin  = 34 (Wagner02;  Lmax  = 1012 (Mozart05), 
 
from which the expressions (6) are computed as 
  
  X = (V - 23)/(85 - 23) 
  Y = (f1 - 9)/(1002 - 9) 
  Z = (L - 34)/(1012 - 34) 
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and finally, formulas (7) whose values can be found in Table 5. It is to be noted that x + y+ z 
= 1. If one adds to this sample a new text whose minima and maxima are more extreme that 
those above, the whole computation must be performed anew. 
 

Table 5 
Components of the vector U 

 
Text ID V f1 L X Y Z Sum x y z 

Bach01 44 106 124 0.3387 0.0977 0.0920 0.5284 0.6410 0.1849 0.1742 
Bach02 45 147 163 0.3548 0.1390 0.1319 0.6257 0.5671 0.2221 0.2108 
Bach03 45 155 169 0.3548 0.1470 0.1380 0.6399 0.5545 0.2298 0.2157 
Bach04 47 140 158 0.3871 0.1319 0.1268 0.6458 0.5994 0.2043 0.1963 
Bach05 44 113 129 0.3387 0.1047 0.0971 0.5406 0.6266 0.1937 0.1797 
Beethoven01 59 537 550 0.5806 0.5317 0.5276 1.6400 0.3541 0.3242 0.3217 
Beethoven02 62 626 644 0.6290 0.6213 0.6237 1.8741 0.3356 0.3315 0.3328 
Beethoven03 63 625 636 0.6452 0.6203 0.6155 1.8810 0.3430 0.3298 0.3272 
Beethoven04 63 868 879 0.6452 0.8651 0.8640 2.3742 0.2717 0.3644 0.3639 
Beethoven05 63 473 492 0.6452 0.4673 0.4683 1.5807 0.4081 0.2956 0.2963 
Gesualdo01 35 65 83 0.1935 0.0564 0.0501 0.3000 0.6451 0.1880 0.1670 
Gesualdo02 34 51 68 0.1774 0.0423 0.0348 0.2545 0.6972 0.1662 0.1366 
Gesualdo03 37 52 72 0.2258 0.0433 0.0389 0.3080 0.7332 0.1406 0.1262 
Gesualdo04 36 67 82 0.2097 0.0584 0.0491 0.3172 0.6611 0.1842 0.1547 
Gesualdo05 33 61 76 0.1613 0.0524 0.0429 0.2566 0.6286 0.2041 0.1674 
Ligeti01 74 107 146 0.8226 0.0987 0.1145 1.0358 0.7942 0.0953 0.1106 
Ligeti02 85 125 174 1.0000 0.1168 0.1431 1.2600 0.7937 0.0927 0.1136 
Ligeti03 74 101 140 0.8226 0.0926 0.1084 1.0236 0.8036 0.0905 0.1059 
Liszt01 65 128 166 0.6774 0.1198 0.1350 0.9322 0.7267 0.1286 0.1448 
Liszt02 75 400 433 0.8387 0.3938 0.4080 1.6404 0.5113 0.2400 0.2487 
Liszt03 78 113 152 0.8871 0.1047 0.1207 1.1125 0.7974 0.0941 0.1085 
Liszt04 71 273 298 0.7742 0.2659 0.2699 1.3100 0.5910 0.2029 0.2061 
Liszt05 65 287 317 0.6774 0.2800 0.2894 1.2467 0.5434 0.2246 0.2321 
Monteverdi01 37 399 408 0.2258 0.3927 0.3824 1.0010 0.2256 0.3924 0.3820 
Monteverdi02 30 242 248 0.1129 0.2346 0.2188 0.5664 0.1993 0.4143 0.3864 
Monteverdi03 35 240 249 0.1935 0.2326 0.2198 0.6460 0.2996 0.3601 0.3403 
Monteverdi04 32 341 347 0.1452 0.3343 0.3200 0.7995 0.1816 0.4182 0.4003 
Monteverdi05 32 260 267 0.1452 0.2528 0.2382 0.6362 0.2282 0.3973 0.3745 
Mozart01 58 692 707 0.5645 0.6878 0.6881 1.9405 0.2909 0.3545 0.3546 
Mozart02 56 482 495 0.5323 0.4763 0.4714 1.4800 0.3596 0.3219 0.3185 
Mozart03 59 499 510 0.5806 0.4935 0.4867 1.5608 0.3720 0.3162 0.3118 
Mozart04 57 474 491 0.5484 0.4683 0.4673 1.4839 0.3695 0.3156 0.3149 
Mozart05 55 1002 1012 0.5161 1.0000 1.0000 2.5161 0.2051 0.3974 0.3974 
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Palestrina01 27 209 215 0.0645 0.2014 0.1851 0.4510 0.1431 0.4466 0.4104 
Palestrina02 24 101 108 0.0161 0.0926 0.0757 0.1844 0.0874 0.5023 0.4102 
Palestrina03 26 157 164 0.0484 0.1490 0.1329 0.3304 0.1465 0.4512 0.4024 
Palestrina04 27 243 248 0.0645 0.2356 0.2188 0.5190 0.1243 0.4541 0.4216 
Palestrina05 23 70 76 0.0000 0.0614 0.0429 0.1044 0.0000 0.5886 0.4114 
Schoenberg01 65 913 924 0.6774 0.9104 0.9100 2.4978 0.2712 0.3645 0.3643 
Schoenberg02 67 68 112 0.7097 0.0594 0.0798 0.8488 0.8360 0.0700 0.0940 
Schoenberg03 63 64 105 0.6452 0.0554 0.0726 0.7731 0.8345 0.0716 0.0939 
Schoenberg04 70 51 97 0.7581 0.0423 0.0644 0.8648 0.8766 0.0489 0.0745 
Schoenberg05 56 50 87 0.5323 0.0413 0.0542 0.6277 0.8479 0.0658 0.0863 
Shostakovich01 30 73 87 0.1129 0.0645 0.0542 0.2315 0.4876 0.2784 0.2340 
Shostakovich03 32 33 51 0.1452 0.0242 0.0174 0.1867 0.7775 0.1294 0.0931 
Shostakovich04 34 23 45 0.1774 0.0141 0.0112 0.2028 0.8750 0.0695 0.0555 
Shostakovich05 33 57 78 0.1613 0.0483 0.0450 0.2546 0.6335 0.1898 0.1767 
Skrjabin01 48 19 55 0.4032 0.0101 0.0215 0.4348 0.9274 0.0232 0.0494 
Skrjabin02 31 20 42 0.1290 0.0111 0.0082 0.1483 0.8701 0.0747 0.0552 
Skrjabin03 51 33 67 0.4516 0.0242 0.0337 0.5095 0.8863 0.0474 0.0662 
Skrjabin04 32 12 36 0.1452 0.0030 0.0020 0.1502 0.9663 0.0201 0.0136 
Skrjabin05 38 23 52 0.2419 0.0141 0.0184 0.2744 0.8816 0.0514 0.0671 
Stravinsky01 51 194 214 0.4516 0.1863 0.1840 0.8220 0.5494 0.2267 0.2239 
Stravinsky02 64 407 430 0.6613 0.4008 0.4049 1.4670 0.4508 0.2732 0.2760 
Stravinsky03 73 182 220 0.8065 0.1742 0.1902 1.1709 0.6888 0.1488 0.1624 
Stravinsky04 65 396 428 0.6774 0.3897 0.4029 1.4700 0.4608 0.2651 0.2741 
Stravinsky05 71 215 246 0.7742 0.2075 0.2168 1.1984 0.6460 0.1731 0.1809 
Wagner01 29 33 50 0.0968 0.0242 0.0161 0.1371 0.7059 0.1763 0.1178 
Wagner02 31 9 34 0.1290 0.0000 0.0000 0.1290 1.0000 0.0000 0.0000 
Wagner03 81 484 501 0.9355 0.4783 0.4775 1.8913 0.4946 0.2529 0.2525 
Wagner04 39 85 107 0.2581 0.0765 0.0742 0.4088 0.6313 0.1872 0.1815 
 
 
Since we have three components, the graphical presentation would require a three- dimen-
sional figure which is, of course, not quite lucid. Instead, we use the method of ternary plot 
which allows us to present the coordinates of U in a two-dimensional scheme as shown in 
Figure 5. 
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Figure 5. Ternary plot 

 
The components of 61 musical compositions plotted in this scheme display a very regular 
behaviour as shown in Figure 6. Even if the composers have different styles, use different 
means and many times rework the composition, there is an unconscious mechanism behind 
their striving for originality leading to some stable interrelations. 

 
Figure 6. The components of the U-vector of 61 compositions 

 
It may be noted that rank-frequency distributions of words in written texts abide by the same 
regularity, but the direction of the points in the ternary plot is quite different (cf. Popescu et 
al. 2010). Perhaps it is this direction that is characteristic for communication types using 
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sound means. The research in this direction is not yet advanced, one would be obliged to 
analyse also the communication of some animals. 
 The relationship of individual components x, y, z to one another is quite straight-
forward. For each of them we obtain a linear relationship as shown in Figures 7 to 9. Though 
for small x and great y one can observe deviations form the linear relationships, we suppose 
that it is caused by the specificity of the given sample. Needless to say, further investigation 
will change some relationships but the deviation from linearity will not be essential. 

 
Figure 7. The relationship between x and y 

 

 
Figure 8. The relationship between x and z 
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Figure 9. The relationship between y and z 

 
Of course, the composers can also be averaged, and in that case we obtain a very unam-
biguous ordering. As shown in Table 6, only Schoenberg´s value of z slighty deviates. 
Increasing x is accompanied with decreasing y and z. 
  

Table 6 
Average x,y,z values of 13 composers 

 
Composer x  y  z  

Palestrina 0.1003 0.4885 0.4112 
Monteverdi 0.2269 0.3965 0.3767 
Mozart 0.3195 0.3411 0.3395 
Beethoven 0.3425 0.3291 0.3284 
Stravinsky 0.5592 0.2174 0.2235 
Bach 0.5977 0.2069 0.1953 
Liszt 0.6339 0.1780 0.1880 
Gesualdo 0.6730 0.1766 0.1504 
Shostakovich 0.6934 0.1668 0.1398 
Wagner 0.7080 0.1541 0.1379 
Schoenberg 0.7332 0.1242 0.1426 
Ligeti 0.7971 0.0928 0.1100 
Skrjabin 0.9064 0.0434 0.0503 

  
 



I.-I. Popescu, Z. Martináková-Rendeková, G. Altmann 
 

40 

Preliminary investigations show that in musical compositions pitches play the same semiotic 
role as the “lowest” linguistic entities like sounds, phonemes, graphemes occupying ap-
proximately the same “corridor” in the ternary plot. However, further investigations are 
necessary to show that the ternary plot is an appropriate means for scrutinizing the semiotic 
status of artistic or linguistic entities. 
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Abstract. The present article is a continuation of the analysis performed in Tuzzi, Popescu, Altmann 
(2010). Here the parts-of-speech have been scrutinized. Their rank-frequency distributions have been 
characterized using the Repeat rate, the Entropy and Ord’s criterion. The ranking of POS with individ-
ual Italian presidents has been used to characterize the homogeneity individually and as a whole of 63 
texts using Kendall’s concordance coefficient. There is high concordance. The last aspect is the com-
putation of distances between identical parts-of-speech which yield a very unique picture represented 
by the Zipf-Alekseev function. 
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Introduction 
 
Usually POS are studied from grammatical or semantic point of view. The results are 
classifications, one of which is known since antiquity and still used today. The number of 
classes lies between 8 and ca 100 according to the adopted criteria. It is to be remarked that no 
criteria warrant the “truth” and whatever kind of criteria we set up, they are merely our con-
ceptual constructions. In some languages semantic criteria are sufficient, in other ones 
morphology may be helpful and if there is reduced morphology, syntactic criteria may be 
used. The choice of criteria depends also on the aim of investigation; it serves our elementary 
concept formation. The result of a classification procedure is never a theory but merely a 
taxonomic account (cf. Bunge 1983:17) of what is there. Since the ca 500 numerical clas-
sification methods yield different results, they have nothing to do with “truth” but merely with 
utility. 
 Nevertheless, if we are able to perform an elementary classification, we may compare 
both text and languages.  
 In a previous work (cf. Tuzzi, Popescu, Altmann 2010) the rank-frequency distribution 
of parts-of-speech in the end-of-year speeches of Italian presidents has been analysed. The 
ranking was performed according to frequency, i.e. each POS could attain different rank in 
different texts. But if we go back to the nominal scale and ascribe each POS its frequency 
rank in the given text, we obtain a different order. It would be possible to compare the texts 
using the absolute frequencies and the chi-square test but if we consider 60 texts and several 
thousands of words, the chi-square — which  increases with increasing sample size — would 
simply signalize the heterogeneity of texts. If we ascribed the frequencies to the respective 
POS, we would obtain a still greater chi-square. Hence we simplify the procedure and ascribe 
the POS only their rank number. In Italian, the program works with the following classes: 
noun (n), preposition (prep), verb (v), adjective (a), pronoun (pron), article (det), con-
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junction (cong), adverb (avv), numeral (num), interjection (esc), proper noun (nm), i.e. it 
follows the classical word class classification. (For other possibilities see Bergenholtz, 
Schaeder 1977; Best 2005; Kroeger 2005) Using this classification we ask the following ques-
tions: 

(a) Which formal properties of the “speeches” change, and if so, in what way? That is, 
is there some development in the use of POS? 

(b) Do all texts of an individual president display a concordant rank-order or are there 
non-homogeneities? 

(c) Do the sequences of POS display different patterns? Here we ask what are the 
distances between equal POS in the sequence. Do they follow a certain distribution? 

(d) One could, of course, ask whether there is some concordance between the digrams 
or trigrams of subsequent POS and show the entropy or the transinformation in the sequences, 
but this is a problem which can be omitted here and solved in another place.  
  
 
1. Indicator development 
 
The most common indicators of rank-frequency distributions are the (relative) entropy Hrel, 
the Repeat Rate RR and Ord’s indicators I and S which are functions of moments of the 
distribution. In order to show them we present the distributions of POS in the 60 end-of-year 
speeches of Italian presidents as they were presented in Table 5.1 in Tuzzi et al. (2010: 117f.). 
Here the identity of individual POS is not taken into account, the frequencies are simply 
ranked.  
 

Table 1 
Ranked frequencies of parts-of-speech  

in Italian end-of-year Addresses 
 

Text Parts-of-speech frequencies N 
1949Einaudi 41,37,33,30,17,15,14,6,1 194 
1950Einaudi 42,36,20,15,15,9,8,4,1 150 
1951Einaudi 50,41,40,34,21,18,15,11 230 
1952Einaudi 46,35,28,27,13,12,11,7 179 
1953Einaudi 47,42,34,24,15,12,9,6,1 190 
1954Einaudi 57,54,43,36,20,18,17,14,1 260 
1955Gronchi 83,78,64,51,31,30,29,21,1 388 
1956Gronchi 180,121,88,87,71,58,34,26 665 
1957Gronchi 267,241,170,126,93,84,79,59,6,5 1130 
1958Gronchi 201,162,131,127,82,74,63,42,3,1 886 
1959Gronchi 181,135,92,80,72,71,36,29,1 697 
1960Gronchi 196,161,112,106,78,63,45,38,3,2 804 
1961Gronchi 304,244,184,162,111,105,75,65,2 1252 
1962Segni 196,147,120,83,73,54,36,29 738 
1963Segni 257,219,170,131,93,68,52,45,14,8 1057 
1964Saragat 102,85,84,64,42,40,28,17,3 465 
1965Saragat 267,211,141,138,85,79,78,45,6,3 1053 
1966Saragat 324,239,185,144,109,75,66,50,5,2 1199 
1967Saragat 263,207,167,145,96,64,59,36,14,3,2 1056 
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1968Saragat 304,243,176,134,95,86,70,56,8,2 1174 
1969Saragat 394,284,232,222,165,103,99,72,8,3,2 1584 
1970Saragat 490,389,272,257,186,113,112,86,17,5,2 1929 
1971Leone 70,51,37,35,30,17,11,6,3,2 262 
1972Leone 182,149,134,111,69,45,45,24,5,3 767 
1973Leone 298,232,205,174,103,97,76,63,1,1 1250 
1974Leone 197,141,139,120,66,59,42,35,1,1 801 
1975Leone 312,244,200,191,122,97,91,69,2 1328 
1976Leone 321,239,211,196,113,112,97,73,3,1 1366 
1977Leone 358,270,262,216,142,122,115,113,4,2 1604 
1978Pertini 332,283,248,156,130,125,106,86,17,10 1493 
1979Pertini 499,442,345,279,219,201,184,115,8,8,2 2302 
1980Pertini 316,244,228,164,121,104,101,61,10,9,2 1360 
1981Pertini 571,571,377,331,261,231,227,196,38,14,1 2818 
1982Pertini 509,495,332,322,233,202,172,139,62,19,2 2487 
1983Pertini 786,760,510,452,360,308,275,206,55,33,3 3748 
1984Pertini 302,269,197,163,129,97,95,51,20,17 1340 
1985Cossiga 612,427,404,289,207,192,120,93,10,3,2 2359 
1986Cossiga 321,232,215,187,130,106,79,77,1,1 1349 
1987Cossiga 501,414,349,248,184,163,107,103,11,11 2091 
1988Cossiga 557,467,369,311,199,183,146,134,14,5 2385 
1989Cossiga 441,399,302,231,154,145,102,101,31,6 1912 
1990Cossiga 800,646,534,396,305,277,173,163,35,18 3347 
1991Cossiga 95,71,64,57,48,29,26,22,4,2 418 
1992Scalfaro 656,472,435,360,250,231,208,151,4,3,2 2772 
1993Scalfaro 684,501,469,387,247,236,218,168,22,8,1 2941 
1994Scalfaro 866,633,590,482,284,267,248,207,15,12,1 3605 
1995Scalfaro 994,741,682,523,357,332,290,246,38,22,3 4228 
1996Scalfaro 535,348,326,313,183,128,115,110,16,11 2085 
1997Scalfaro 1113,1048,712,522,429,397,368,329,54,33,10 5015 
1998Scalfaro 972,775,577,415,399,289,254,251,35,23,5 3995 
1999Ciampi 504,347,291,278,206,110,89,82,24,9,1 1941 
2000Ciampi 432,338,291,273,168,124,95,88,23,12 1844 
2001Ciampi 549,395,338,262,224,109,96,89,18,15,2 2097 
2002Ciampi 556,389,312,304,209,132,112,98,10,7 2129 
2003Ciampi 408,297,231,214,142,112,79,75,4,2,1 1565 
2004Ciampi 455,353,268,265,147,111,93,88,19,8 1807 
2005Ciampi 290,235,181,166,114,89,55,40,12,10,1 1193 
2006Napolitano 502,377,356,286,191,169,159,146,10,7,1 2204 
2007Napolitano 419,352,274,242,144,123,115,104,13,5,3 1794 
2008Napolitano 409,328,281,220,135,127,120,86,4,2,1 1713 
2009Napolitano 528,410,374,268,175,173,166,166,24,8,1 2293 
20010Napolitano 593,502,354,336,197,190,162,117,35,12 2498 
20011Napolitano 551,458,341,330,193,167,153,134,27,8,3 2365 
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1.1. Repeat Rate 
 
The Repeat Rate is defined as the sum of squares of relative frequencies pi

2 = (fi/N)2, i.e. 
 

(1) RR = 2 2
2

1 1

1K K

i i
i i

p f
N 

  . 

 
Usually one uses it in a relative form given as 
 

(2) 
1

1 1/rel
RRRR

K





 

 
or in the McIntosh (1967) form as 
 

(3) 
1

1 1/McInt
RRRR

K





. 

 
For the extensive use of this indicator see e.g. Popescu et al. (2009), Popescu, Mačutek, 
Altmann (2009). The computed values are presented in Table 2. The inventory in each case is 
K = 11 even if in some texts not all POS are used. 
 

Table 2 
Repeat rates of Parts-of-speech in 60 end-of-year speeches of Italian presidents. 

 
Text N RR RRrel RRMcInt 

1949Einaudi 194 0.1537 0.9309 0.8703 
1950Einaudi 150 0.1810 0.9009 0.8226 
1951Einaudi 230 0.1521 0.9327 0.8732 
1952Einaudi 179 0.1666 0.9168 0.8474 
1953Einaudi 190 0.1715 0.9113 0.8387 
1954Einaudi 260 0.1556 0.9288 0.8669 
1955Gronchi 388 0.1515 0.9333 0.8743 
1956Gronchi 665 0.1641 0.9194 0.8516 
1957Gronchi 1130 0.1563 0.9280 0.8656 
1958Gronchi 886 0.1502 0.9348 0.8769 
1959Gronchi 697 0.1610 0.9229 0.8572 
1960Gronchi 804 0.1573 0.9270 0.8639 
1961Gronchi 1252 0.1565 0.9279 0.8654 
1962Segni 738 0.1684 0.9148 0.8442 
1963Segni 1057 0.1596 0.9245 0.8598 
1964Saragat 465 0.1537 0.9310 0.8704 
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1965Saragat 1053 0.1590 0.9250 0.8607 
1966Saragat 1199 0.1680 0.9153 0.8449 
1967Saragat 1056 0.1607 0.9232 0.8577 
1968Saragat 1174 0.1632 0.9205 0.8533 
1969Saragat 1584 0.1562 0.9282 0.8659 
1970Saragat 1929 0.1610 0.9229 0.8572 
1971Leone 262 0.1669 0.9165 0.8468 
1972Leone 767 0.1615 0.9223 0.8563 
1973Leone 1250 0.1566 0.9277 0.8651 
1974Leone 801 0.1609 0.9230 0.8574 
1975Leone 1328 0.1535 0.9312 0.8708 
1976Leone 1366 0.1518 0.9331 0.8740 
1977Leone 1604 0.1467 0.9386 0.8833 
1978Pertini 1493 0.1470 0.9383 0.8827 
1979Pertini 2302 0.1466 0.9388 0.8835 
1980Pertini 1360 0.1502 0.9348 0.8768 
1981Pertini 2818 0.1406 0.9453 0.8948 
1982Pertini 2487 0.1400 0.9459 0.8959 
1983Pertini 3748 0.1428 0.9429 0.8906 
1984Pertini 1340 0.1489 0.9362 0.8793 
1985Cossiga 2359 0.1629 0.9208 0.8538 
1986Cossiga 1349 0.1530 0.9317 0.8717 
1987Cossiga 2091 0.1575 0.9268 0.8636 
1988Cossiga 2385 0.1536 0.9310 0.8705 
1989Cossiga 1912 0.1544 0.9301 0.8690 
1990Cossiga 3347 0.1542 0.9304 0.8695 
1991Cossiga 418 0.1473 0.9380 0.8822 
1992Scalfaro 2772 0.1502 0.9348 0.8769 
1993Scalfaro 2941 0.1482 0.9370 0.8806 
1994Scalfaro 3605 0.1529 0.9318 0.8718 
1995Scalfaro 4228 0.1488 0.9363 0.8794 
1996Scalfaro 2085 0.1581 0.9261 0.8625 
1997Scalfaro 5015 0.1473 0.9379 0.8821 
1998Scalfaro 3995 0.1518 0.9330 0.8739 
1999Ciampi 1941 0.1609 0.9230 0.8574 
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2000Ciampi 1844 0.1533 0.9314 0.8712 
2001Ciampi 2097 0.1637 0.9199 0.8523 
2002Ciampi 2129 0.1619 0.9220 0.8557 
2003Ciampi 1565 0.1627 0.9211 0.8542 
2004Ciampi 1807 0.1606 0.9233 0.8579 
2005Ciampi 1193 0.1584 0.9258 0.8619 
2006Napolitano 2204 0.1471 0.9382 0.8826 
2007Napolitano 1794 0.1532 0.9314 0.8712 
2008Napolitano 1713 0.1562 0.9282 0.8658 
2009Napolitano 2293 0.1474 0.9379 0.8820 
20010Napolitano 2498 0.1535 0.9311 0.8707 
20011Napolitano 2365 0.1512 0.9336 0.8749 

 
Taking the values individually, we obtain rather an ellipse, though a slight decrease — which 
is probably its main axis — can be seen, as shown in Figure 1 

 
Figure 1. Repeat rates in the course of years 

 
 The decrease, though not very smooth, can be better seen, if we take the means of 
individual presidents and obtain the results presented in Table 3 and Figure 2. 
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Table 3 
Mean Repeat Rates of individual presidents 

 
President Years Mean RR 
Einaudi 1949-54 0.1634 
Gronchi 1955-61 0.1567 
Segni 1962-63 0.1640 
Saragat 1964-70 0.1603 
Leone 1971-77 0.1568 
Pertini 1978-84 0.1452 
Cossiga 1985-91 0.1547 
Scalfaro 1992-98 0.1510 
Ciampi 1999-2005 0.1602 
Napolitano 2006-11 0.1514 

 

 
Figure 2. Mean Repeat Rates of individual presidents  

 
 
In Figure 2 the irregular decrease is evident. But if it is existent, it means that the newer 
presidents use a more vivid language, more complex sentences, and more different facts. 
Though the nouns are the most frequent POS, their attributes and predicates get a more 
complex structure. Using only these texts it cannot be said whether this is a special property 
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of these texts, or whether Italian as a whole has changed in this sense. In any case, one sees a 
slight change within the last 60 years. Of course, the mean RR could be computed also using 
the addition of frequencies of the same POS in all texts of the given president but we omit this 
possibility because it would mean text mixing. 
 
 
1.2. Entropy 
 
Considering the second frequently used indicator, the Entropy, defined as 
 

(4) 2 2 2
1 1

1log log log
K K

i i i i
i i

H p p N f f
N 

      

 
which can be transformed in Repeat Rate, we obtain the results in Table 4 and Figure 3. 
 

Table 4 
The development of Entropy in 60 years 

 
Text H Text H 

1949Einaudi 2.8423 1981Pertini 2.9843 
1950Einaudi 2.7170 1982Pertini 3.0097 
1951Einaudi 2.8383 1983Pertini 2.9842 
1952Einaudi 2.7608 1984Pertini 2.9458 
1953Einaudi 2.7477 1985Cossiga 2.8178 
1954Einaudi 2.8417 1986Cossiga 2.8517 
1955Gronchi 2.8613 1987Cossiga 2.8610 
1956Gronchi 2.7813 1988Cossiga 2.8759 
1957Gronchi 2.8720 1989Cossiga 2.8959 
1958Gronchi 2.8787 1990Cossiga 2.8934 
1959Gronchi 2.8071 1991Cossiga 2.9262 
1960Gronchi 2.8495 1992Scalfaro 2.8813 
1961Gronchi 2.8334 1993Scalfaro 2.9180 
1962Segni 2.7546 1994Scalfaro 2.8800 
1963Segni 2.8174 1995Scalfaro 2.9227 
1964Saragat 2.8513 1996Scalfaro 2.8675 
1965Saragat 2.8518 1997Scalfaro 2.9391 
1966Saragat 2.7916 1998Scalfaro 2.9100 
1967Saragat 2.8566 1999Ciampi 2.8504 
1968Saragat 2.8294 2000Ciampi 2.9004 
1969Saragat 2.8639 2001Ciampi 2.8326 
1970Saragat 2.8503 2002Ciampi 2.8298 
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1971Leone 2.8135 2003Ciampi 2.8088 
1972Leone 2.8226 2004Ciampi 2.8538 
1973Leone 2.8301 2005Ciampi 2.8629 
1974Leone 2.8060 2006Napolitano 2.9136 
1975Leone 2.8467 2007Napolitano 2.8795 
1976Leone 2.8662 2008Napolitano 2.8424 
1977Leone 2.9003 2009Napolitano 2.9358 
1978Pertini 2.9440 2010Napolitano 2.9043 
1979Pertini 2.9176 2011Napolitano 2.9165 
1980Pertini 2.9214   

 
Figure 3. Entropies in the 63 speeches  

 
The motion, except for Pertini, is quite regular and displays a slightly increasing entropy, i.e. 
more homogeneous use of POS, in other words, a motion away from stereotypy.   
 The computing of relative Entropy is here irrelevant because for each text we must 
take into account the same number of classes (11).  
 Again, the means of Entropy could be computed. It is not recommended to add the 
frequencies in texts of individual presidents because it would mean the creation of mixed 
samples; further, the ranks in individual texts do not represent always the same POS, hence it 
would be a very heterogeneous sample. For this reason we take the means of individual 
presidents considering H a variable. We obtain the results presented in Table 5 and Figure 4 
in which the slight increase of Entropy in the course of years can be observed. This is, of 
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course the same story as told by the Repeat Rate. Pertini is again an outlier. But only his-
torians or literary scientists could explain why. 
 

Table 5 
Mean Entropies in texts of individual presidents 

 
President Years Mean H 
Einaudi 1949-54 2.7913 
Gronchi 1955-61 2.8405 
Segni 1962-63 2.7860 
Saragat 1964-70 2.8421 
Leone 1971-77 2.8408 
Pertini 1978-84 2.9581 
Cossiga 1985-91 2.8745 
Scalfaro 1992-98 2.9027 
Ciampi 1999-2005 2.8484 
Napolitano 2006-11 2.8987 

 

 
 

Figure 4. Mean Entropies in texts of individual presidents 
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1.3. Ord’s criterion 
 
Ord (1972) defined indicators based on moments of the distribution. The first one, I, is the 
usual variance divided by the mean, i.e. 
 

(5) 2

1

mI
m




. 

 
The second, S, takes into account the asymmetry in its relation to the variance, i.e. 
 

(6) 3

2

mS
m

 . 

 
Both have been used frequently in linguistic literature. Here mr is the central moment of r-th 
order, m’1 is the mean of the rank-frequency distribution. If one computes these indicators 
using Table 1, one obtains the results presented in Table 6. 
 

Table 6 
Ord’s criterion for the rank-frequency distributions of POS 

 
Text N I S 

1949Einaudi 194 1.2189 1.2690 
1950Einaudi 150 1.3551 1.7796 
1951Einaudi 230 1.2456 1.2328 
1952Einaudi 179 1.2934 1.4916 
1953Einaudi 190 1.2558 1.7159 
1954Einaudi 260 1.3259 1.5080 
1955Gronchi 388 1.3265 1.3657 
1956Gronchi 665 1.3169 1.2636 
1957Gronchi 1130 1.4418 1.6456 
1958Gronchi 886 1.3211 1.2585 
1959Gronchi 697 1.3430 1.2641 
1960Gronchi 804 1.3621 1.4859 
1961Gronchi 1252 1.3493 1.3737 
1962Segni 738 1.3019 1.4926 
1963Segni 1057 1.4416 1.9439 
1964Saragat 465 1.2493 1.3227 
1965Saragat 1053 1.4232 1.5455 
1966Saragat 1199 1.3796 1.6931 
1967Saragat 1056 1.3945 1.8499 
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1968Saragat 1174 1.4314 1.6946 
1969Saragat 1584 1.3685 1.5092 
1970Saragat 1929 1.4163 1.7434 
1971Leone 262 1.3658 1.8151 
1972Leone 767 1.2888 1.6668 
1973Leone 1250 1.3204 1.4109 
1974Leone 801 1.2808 1.4538 
1975Leone 1328 1.3247 1.3087 
1976Leone 1366 1.3463 1.2948 
1977Leone 1604 1.3791 1.2881 
1978Pertini 1493 1.4681 1.5592 
1979Pertini 2302 1.3731 1.3268 
1980Pertini 1360 1.4281 1.6122 
1981Pertini 2818 1.4712 1.3681 
1982Pertini 2487 1.4968 1.5657 
1983Pertini 3748 1.4769 1.5485 
1984Pertini 1340 1.4785 1.7668 
1985Cossiga 2359 1.3437 1.5755 
1986Cossiga 1349 1.3284 1.3096 
1987Cossiga 2091 1.3910 1.6895 
1988Cossiga 2385 1.3920 1.5291 
1989Cossiga 1912 1.4487 1.7592 
1990Cossiga 3347 1.4227 1.6663 
1991Cossiga 418 1.3746 1.4217 
1992Scalfaro 2772 1.3698 1.2874 
1993Scalfaro 2941 1.4133 1.4010 
1994Scalfaro 3605 1.4114 1.5144 
1995Scalfaro 4228 1.4571 1.5545 
1996Scalfaro 2085 1.4205 1.6725 
1997Scalfaro 5015 1.5348 1.6463 
1998Scalfaro 3995 1.5167 1.6602 
1999Ciampi 1941 1.4041 1.7731 
2000Ciampi 1844 1.4005 1.7182 
2001Ciampi 2097 1.4260 1.9352 
2002Ciampi 2129 1.3727 1.6078 
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2003Ciampi 1565 1.3642 1.5782 
2004Ciampi 1807 1.4228 1.8024 
2005Ciampi 1193 1.3865 1.8298 
2006Napolitano 2204 1.4168 1.3981 
2007Napolitano 1794 1.4365 1.6750 
2008Napolitano 1713 1.3698 1.5059 
2009Napolitano 2293 1.4967 1.5254 
2010Napolitano 2498 1.4541 1.6773 
2011Napolitano 2365 1.4538 1.6501 

 
The values of <I, S> can be seen in Figure 5 

 
Figure 5. The <I, S> relation for the rank-frequency distributions. 

 
Again, the increasing trend is visible but the dispersion is very great. In any case, the <I,S> 
points are placed in an ellipse whose main axis is the given straight line. The values lie in the 
domain of the negative hypergeometric (beta-binomial) distribution with eight exceptions 
(Einaudi 1950, 1953, Segni 1963, Saragat 1967, Leone 1971, 1972, Ciampi 2001, 2005) re-
presented by the eight highest points in Figure 5. In general, the S-points that are smaller than 
2I - 1 lie in the beta-binomial domain, that means, almost all of the texts can be modelled by 
the beta-binomial distribution. It cannot be said whether all Italian texts abide by this 
background mechanism.  
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 The <I,S>-scheme of individual presidents looks more concentrated as can be seen in 
Figure 6 for Gronchi, Ciampi, Cossiga, and Scalfaro. Yet, the remainig data cannot be 
satisfactorily captured by a linear fitting (y = a + bx), as can be seen in the associated Table 7 
below. Actually, it yields good R2 only with two presidents, Gronchi and Ciampi. In general, 
perhaps the points spread out within an ellipse, depending on the actual writer(s) and style. 
 

  

 
Figure 6. Some <I,S>-relation of individual presidents 

 
 

Table 7 
The slope b of the linear relation btween I and S 

 
President  Speeches Slope b R2 
Einaudi 6 2.9375 0.4629 
Gronchi 7 3.0824 0.8515 
Segni 2 3.2305 1.0000 
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Saragat 7 2.0871 0.5470 
Leone 7 -0.6531 0.0139 
Pertini 7 1.8439 0.2727 
Cossiga 7 3.0447 0.6509 
Scalfaro 7 1.8136 0.5627 
Ciampi 7 4.4919 0.7128 
Napolitano 6 0.9091 0.1159 

 
 Ordering, e.g. the I-values according to years we obtain a relatively stable image. The 
slope of the straight line is positive but not significant. That means, the presidential speeches 
try to maintain the same distributional strategy. 

 
Figure 7. The values of I in the course of years  

 
 
2. Comparisons 
 
For comparing the individual speeches or presidents, the frequencies must be ascribed to the 
same POS, not to the ranks. Afterwards the frequencies could be compared and tests for 
homogeneity performed. However, we want to avoid the usual chi-square test for homo-
geneity because of some bad properties of this statistics. Instead, we fix the classes and each 
class obtains a rank number on the basis of its frequency. The ties will be taken into account. 
For a group of texts we compute Kendall’s concordance coefficient W  <0;1> yielding zero 
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for no concordance and 1 for full concordance. An example for rewriting the texts by Einaudi 
are shown in Table 8. 
 

Table 8 
Ranking the representation of individual POS in texts by Einaudi 

(E49 = Einaudi 1949,…) 
 

  E49 E50 E51 E52 E53 E54 Ti Ti
2 

1 noun 1 1 1 1 1 1 6 36 
2 preposition 2 2 4 2 2 2 14 196 
3 verb 3 3 2 3 4 4 19 361 
4 adjective 4 4 3 4 3 3 21 441 
5 pronoun 5 6 5 5 5 5 31 961 
6 article 7 7 6 6 7 7 40 1600 
7 conjunction 6 5 8 7 6 6 38 1444 
8 adverb 8 8 7 8 8 8 47 2209 
9 numeral 9 9 10 10 9 11 58 3364 
10 interjection 10,5 10,5 10 10 10,5 9,5 61 3721 
11 proper noun 10,5 10,5 10 10 10,5 9,5 61 3721 
 Sums       396 18054 

 
 
Here Ti is the sum of the row, Ti

2 is the square of the sum. K = 11 is the number of different 
POS and m the number of texts, here m = 6. As can be seen, in row 9 to 11 there are 4 ties of 
two cells and in 2 ties of three cells. The weight of the ties will be computed as 
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yielding in our case V = 4(23 - 2) + 2(33 - 3) = 24 + 48 = 72. All these values are inserted in 
Kendall’s formula (SS = sum of squares) 
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Inserting the computed values in (8) we obtain 
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This value is so high that no test of significance is necessary. One usually transforms it to a 
chi-square or normal variable (cf. e.g. Bortz, Lienert, Boehnke 1990:469), but for us it is 
sufficient to know that concerning the distribution of POS, all texts by Einaudi display a high 
concordance. 
 If we perform this test for all presidents separately, we obtain the results presented in 
Table 9.  
 Taking all texts together we obtain for the 63 speeches W = 0.9450, that means, as to 
the distribution of POS all texts are concordant; no change can be observed, even if the 
common value is slightly smaller than the individual ones. 
 In general, the use of parts of speech is relatively constant in Italian. It agrees with our 
expectation, but at the same time it shows that some tests, e.g. the chi-square, must be used 
with caution. If one uses the chi-square test for homogeneity, one obtains in many cases signs 
of great non-homogeneities which are due to the weakness of the chi-square.  
 

Table 9 
Concordance of POS in texts of individual presidents 

  
President Years W 
Einaudi 1949-54 0.9679 
Gronchi 1955-61 0.9469 
Segni 1962-63 0.9954 
Saragat 1964-70 0.9712 
Leone 1971-77 0.9621 
Pertini 1978-84 0.9775 
Cossiga 1985-91 0.9466 
Scalfaro 1992-98 0.9523 
Ciampi 1999-2005 0.9711 
Napolitano 2006-11 0.9584 

 
 
 
3. Distances 
 
While the preceding sections are related to the frequency distribution of POS, we turn now to 
another aspect, namely the question which are the regularities underlying the repetition of 
POS. To be concrete, we inerprete any president’s speech as a formal sequence S = (s1,…,sn) 
of length n, the elements of which are chosen from the set of word classes  
 
                           W = {a, avv, conj, det, esc, n, nm, num, prep, pron, v}. 
 
The elements of W represent adjective, adverb etc. (see above). For the sake of illustration we 
consider the following hypothetical short “speech” 
 
                                  S = (a, v, n, v, det, a, a, v, v, n, det, a). 
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For any rW we define the distance between two consecutive elements of type r as the 
number of elements   r, lying between them. For example, the distance between the second 
and the third v in the foregoing sequence is 3. For a given text we are interested in the 
distribution of the distance x. For this small example we obtain the following observed 
frequencies: 
 
 
 
 
 
 
 
 
 
 
In particular, the distance 4 appears two times: between first and second a, and between the 
third and fourths a. Further details on the distribution of the distances between identical 
elements of a sequence can be found in Zörnig (2010, 2013). 
 For the 63 studied speeches, the observed distance frequencies are given in the upper 
part of Table 10. For example, in speech 3, the distance 5 occurs 13 times. The line “Rest” 
contains the sum 

20x
xf , where fx denotes the frequency of the distance x. We took into 

consideration only the distances 0 to 20 because the ”rest“ is mostly filled with zeroes. We 
tried to fit the extended positive negative binomial distribution (EPNB) to the observed 
distance frequencies in Table 10. By means of the software Altmann-Fitter (1997), the EPNB 
has been proved to be one of the best suited discrete probablity models for the given data. 
This model, which may be justified linguistically as follows, is given in Wimmer, Altmann 
(1999: 49) as:  
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                                                               k > 0, 0 < p,  < 1 
 
The EPNB can be considered as a zero-modified negative binomial distribution, i.e. it is 
obtained by setting the theoretical frequency of the zero class equal to the observed one and 
by adjusting the negative binomial distribution to the remaining observed frequencies.  
 In the six lines below the line “Rest” of Table 9, we indicate the result in fitting model 
(9): k,  , p denote the optimal parameter values, determined iteratively, X2 is the observed 
chi-square value and P the probability to exceed this value. Finally, DF means the number of 
degrees of freedom. This number is always 18 except for the second speech where DF = 17. 
 Modelling frequency distributions in linguistics, we always start from the assumption 
that there is an attractor value prescribed by the given language (say a) which is steadily 
changed by the speaker/writer on the basis of some boundary circumstances concerning style, 
aim, text sort, etc. This “force” of the speaker is usually symbolized as g(x), being mostly a 
simple function. However, language must be held in equilibrium, hence the hearer controls 
the changes made by the speaker and does not allow him to wander in another attractor, 

      x frequency 
      0       2 
      1       1 
      2       0 
      3       1 
      4       2 
      5       1 
      6       1 
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otherwise the text could get incomprehensible. This “force” can be called h(x). Hence, if we 
approach the data using a discrete model, we use either a stochastic process, or, in order to 
hold the mathematics at lower level, we model the phenomenon by the resulting difference 
equation. As a matter of fact, if there is a distribution of data in linguistics, then the neigh-
bouring classes are always linked by some kind of proportionality. In most cases we have the 
basic model 
 

(10)         1 1
( )( )
( )x x x

g xP f x P P
h x   . 

 
Considering g(x) as the expression of the state of the phenomenon in general plus contribution 
of the speaker, we obtain in simple cases g(x) = a + bx. The hearer controls this influence by 
h(x) = cx. Inserting these suppositions in (10), we obtain the negative binomial distribution, 
and modifying the zero-class yields model (9).  The zero-class plays a special role: in some 
languages the sequence of equal POS is not allowed by grammar, in other ones it is quite 
usual. Hence both for Italian or other languages this class seems to play a special role in any 
language.  
 However, the EPNB was not as satisfactory as it seemed to be after fitting it to the first 
four presidential speeches. In fact, it could only be well fitted in 15 of 63 cases, namely to the 
texts No. 1–4, 7, 9, 10, 17, 19, 23, 26–29, 41. Probably a greater family of distributions linked 
with the negative binomial would be necessary in order to obtain better results (e.g. text No. 5 
can be better captured by the mixed negative binomial, etc.). An explanation for the dif-
ficulties encounterd in fitting the EPNB might be the fact that a presidential speech is cor-
rected by several persons, formulations are exchanged, it is made “smooth”, etc. Other 
reasons for the problems in adjusting the model could be the smallness of samples or possible 
irregularities which cannot be captured by the given model. 
 Hence, in order to obtain an adequate probability distribution we should know all 
boundary conditions responsible for the structuring of each individual text. This is simply im-
possible. Anyway, we have discused the EPNB here for comparison purposes, since it appears 
to be one of the best adequate discrete models. 
 Since no model is that good that it captures the “truth”, we approach it merely step by 
step. But since “discrete” and “continuous”, “finite” and “infinite” etc. are not properties of 
reality but merely properties of our models – our concepts – we may approach our problem 
using also a continuous model or a continuous summing (integration) and consider the result 
as discrete. We venture a change in g(x) and set g(x) = c + k ln x  and considering g(x)/h(x) as 
the relative rate of change of frequencies which we call simply y, we obtain the differential 
equation 
 

(11) 
lndy c k x dx

y mx


 . 

 
After simplification of the parameters its solutions yields 
 
(12) y = Cx a + b ln x, 
 
representing the Zipf-Alekseev function. Here y is the frequency and x is the distance. In order 
to use this function, we consider it discrete and count the distances in the following way: 
distance is the number of steps which must be made in order to come from an entity to the 
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next identical entity. Practically it means that we shift the frequencies in Table 9 one place to 
the right, i.e. distance zero gets distance 1, etc., otherwise we would obtain no result for x = 0. 
 Since now we have a discrete sequence of values, we fit (12) to the data and consider 
the determination coefficient R2 as decisive for acceptation. The results can be found in the 
lower parts of Table 10. Of course, one can change (12) in a discrete distribution if one con-
siders C a normalizing constant and restricts the support to x = 1,2,…,n. For our purposes it is 
not necessary. 
 In this model a is again the status quo in the language, b is the “force” of the writer 
and C is the initial value. In this way we avoid the special marking of the smallest distance 
because it is estimated by C. It is to be noted that (11) is merely a “lenification” of the force 

of the writer. In the discrete model, we have the difference equation 1  x x
a bxP P

cx 


 , 

yielding the negative binomial distribution, in (11) the writer influences only the logarithm of 
the distance. 

Table 10a 
Distances between equal parts-of-speech 

(First row: order number of the text. First column: distance) 
 

d/T 1 2 3 4 5 6 7 8 
0 15 4 24 16 19 16 26 40 
1 31 30 31 34 18 35 54 101 
2 29 19 26 20 29 29 46 101 
3 18 16 24 13 26 35 39 68 
4 12 12 12 16 17 27 34 62 
5 12 10 13 13 15 11 33 33 
6 7 11 18 9 9 19 24 31 
7 9 4 10 8 6 15 23 37 
8 8 3 12 3 4 7 11 24 
9 6 5 9 3 2 12 11 15 
10 4 1 7 6 3 4 10 15 
11 5 3 2 4 3 4 13 17 
12 2 1 6 2 1 4 5 18 
13 2 3 0 1 1 1 6 4 
14 1 1 2 4 0 8 3 14 
15 3 1 4 4 2 3 3 7 
16 3 4 1 0 4 0 3 5 
17 3 1 1 1 2 0 1 4 
18 5 1 3 1 1 2 1 6 
19 0 0 0 1 4 2 2 3 
20 0 0 1 0 3 1 2 6 

Rest 10 10 15 12 12 16 28 45 



Parts-of-speech in Italian texts 
 

61 

k 0.5671 0.3093 0.6259 0.2124 0.9519 0.7748 0.7115 0.6809 
p 0.0965 0.077 0.1052 0.0653 0.109 0.1225 0.1105 0.1039 
α 0.9189 0.9714 0.8914 0.9064 0.895 0.9363 0.9312 0.939 
X2 16.05 14.95 21.14 16.52 44.57 30.83 21.85 13.12 
P 0.5892 0.5989 0.2723 0.5561 0.0005 0.0302 0.2388 0.0161 

DF 18 17 18 18 18 18 18 18 
a 1.2603 2.1369 0.6423 0.9981 1.4156 1.5566 1.3109 1.5914 
b -0.8099 -1.1789 -0.5123 -0.7252 -0.8213 -0.8153 -0.7257 -0.8941 
C 17.4036 9.1407 24.3861 18.992 14.5721 16.5245 27.9738 47.8433 
R2 0.93 0.87 0.92 0.89 0.89 0.91 0.97 0.95 

 
 

Table 10b 
Distances between equal parts-of-speech 

(First row: order number of the text. First column: distance) 
 

d/T 9 10 11 12 13 14 15 16 
0 70 49 34 39 70 46 66 36 
1 178 140 105 121 209 101 176 56 
2 162 102 112 113 161 125 140 66 
3 118 90 86 93 135 74 122 55 
4 69 85 60 62 109 51 91 46 
5 76 63 38 49 89 54 55 27 
6 62 50 31 50 53 50 59 23 
7 59 39 27 41 52 30 44 23 
8 32 30 11 32 37 27 36 14 
9 37 30 30 31 42 22 39 4 
10 27 31 19 28 42 13 19 10 
11 26 23 16 13 39 12 8 14 
12 22 17 18 10 26 15 25 11 
13 20 9 16 8 20 10 8 6 
14 15 13 11 10 15 14 12 7 
15 9 7 4 1 20 8 15 6 
16 14 11 7 9 9 5 12 8 
17 16 10 3 8 7 10 8 3 
18 8 6 5 3 4 7 11 2 
19 5 8 7 3 11 2 10 4 
20 11 9 5 7 7 4 4 4 

Rest 84 54 42 63 85 49 87 30 
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k 0.5759 0.5732 0.7797 0.666 0.5408 0.779 0.5001 0.914 
p 0.092 0.1024 0.1133 0.1003 0.096 0.1112 0.0842 0.1182 
 a 0.9375 0.9441 0.9505 0.9505 0.9436 0.9369 0.937 0.9209 
X2 28.2 18.14 48.59 43.09 30.45 46.8 44.27 37.57 
P 0.0591 0.4463 0.0001 0.0008 0.0333 0.0002 0.0005 0.0044 

DF 18 18 18 18 18 18 18 18 
a 1.4238 1.3838 2.0137 1.6926 1.4929 1.6153 1.5507 1.4084 
b -0.8297 -0.7641 -1.0733 -0.8967 -0.8456 -0.8868 -0.8984 -0.7919 
C 87.2605 63.2462 41.8791 51.0835 92.6848 51.1299 80.6542 34.0047 
R2 0.95 0.95 0.94 0.96 0.95 0.94 0.96 0.96 

 
Table 10c 

Distances between equal parts-of-speech 
(First row: order number of the text. First column: distance) 

 
d/T 17 18 19 20 21 22 23 24 

0 67 80 78 60 104 112 16 51 
1 201 217 174 217 254 344 45 117 
2 134 157 139 157 198 241 43 113 
3 100 136 98 121 161 188 23 75 
4 81 94 79 97 139 149 18 54 
5 55 86 75 63 99 121 17 58 
6 43 54 48 57 105 116 16 54 
7 53 61 49 58 55 89 11 33 
8 41 40 40 36 46 72 10 40 
9 31 25 38 40 55 59 7 16 
10 21 22 22 27 52 59 3 18 
11 27 18 19 21 41 38 2 15 
12 20 24 22 29 25 29 9 14 
13 21 18 13 14 28 37 3 10 
14 13 19 16 17 27 17 2 4 
15 7 8 8 14 16 16 1 5 
16 10 7 15 11 13 31 1 11 
17 11 11 11 13 14 11 3 7 
18 12 10 8 4 18 23 3 4 
19 4 6 7 5 9 10 3 5 
20 6 6 6 4 9 8 2 3 

Rest 84 89 80 98 105 148 14 50 
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k 0.3013 0.4434 0.4811 0.3827 0.5610 0.3897 0.6015 0.6951 
p 0.0685 0.0854 0.0854 0.076 0.0981 0.0790 0.1050 0.1105 
a 0.9357 0.9327 0.9254 0.9488 0.9339 0.9416 0.9365 0.9326 
X2 19.15 35.28 17.13 30.98 30.64 41.82 18.32 37.01 
P 0.3824 0.0007 0.514 0.0289 0.0317 0.0012 0.4345 0.0052 

DF 18 18 18 18 18 18 18 18 
a 1.4127 1.5061 1.1934 1.6529 1.2897 1.3774 1.6672 1.389 
b -0.8861 -0.9027 -0.7493 -0.9599 -0.757 -0.8147 -0.9844 -0.7971 
C 91.4858 99.4463 93.1266 88.229 126.7531 154.7161 20.3653 59.5986 
R2 0.91 0.96 0.96 0.92 0.96 0.92 0.92 0.95 

 
Table 10d 

Distances between equal parts-of-speech 
(First row: order number of the text. First column: distance) 

 
d/T 25 26 27 28 29 30 31 32 

0 79 58 96 98 91 143 208 103 
1 196 139 208 218 211 204 257 186 
2 167 100 162 161 153 156 229 137 
3 130 80 142 123 145 144 243 142 
4 122 64 97 113 118 109 234 141 
5 82 43 75 95 90 87 152 100 
6 79 54 84 68 71 94 163 81 
7 50 33 64 74 70 62 123 66 
8 39 23 41 56 61 70 86 41 
9 33 32 37 51 43 54 85 45 
10 25 18 40 35 35 44 62 39 
11 22 18 35 36 30 38 60 27 
12 17 17 29 27 31 37 37 23 
13 20 10 25 20 23 25 37 21 
14 15 5 14 13 18 22 24 25 
15 22 9 16 16 24 16 31 14 
16 14 4 14 21 15 11 17 13 
17 10 6 12 9 11 18 18 13 
18 14 6 10 11 9 12 29 11 
19 8 7 8 12 8 5 23 11 
20 5 8 8 5 13 15 10 10 

Rest 91 57 101 94 86 117 163 100 
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k 0.6134 0.4303 0.5190 0.4929 0.5643 0.5489 0.9115 0.6433 
p 0.0980 0.0845 0.0891 0.0917 0.1003 0.0902 0.1229 0.1026 
α 0.9363 0.9267 0.9272 0.9277 0.9329 0.9036 0.9092 0.9236 
X2 39.88 23.44 21.70 27.62 20.40 35.39 84.71 42.21 
P 0.0022 0.1742 0.2457 0.0681 0.3111 0.0084 0.0000 0.0010 

DF 18 18 18 18 18 18 18 18 
a 1.4964 1.2396 1.1551 1.0677 1.1827 0.6564 0.881 1.1044 
b -0.8452 -0.7755 -0.7098 -0.6605 -0.6921 -0.4978 -0.5408 -0.6443 
C 92.722 70.8384 112.8847 117.6646 108.5249 149.513 191.2796 106.7775 
R2 0.97 0.94 0.96 0.95 0.96 0.98 0.96 0.97 

 
Table 10e 

Distances between equal parts-of-speech 
(First row: order number of the text. First column: distance) 

 
d/T 33 34 35 36 37 38 39 40 

0 283 253 335 114 163 111 123 147 
1 331 282 421 174 429 228 384 391 
2 295 269 443 139 341 168 281 301 
3 232 248 379 130 248 145 215 248 
4 236 195 338 124 161 121 177 204 
5 212 166 282 98 144 65 127 158 
6 206 162 195 73 121 67 96 114 
7 131 117 165 50 90 54 81 106 
8 134 101 142 67 84 61 74 95 
9 77 70 111 49 87 36 59 70 
10 76 65 89 29 65 31 47 65 
11 47 55 97 23 57 34 48 52 
12 55 54 82 34 25 22 28 37 
13 55 49 71 24 25 24 31 40 
14 44 48 54 17 30 26 32 48 
15 42 35 57 14 24 13 31 30 
16 32 27 36 12 25 8 22 27 
17 29 28 33 10 19 11 22 26 
18 30 22 34 13 21 10 21 16 
19 25 15 33 4 14 5 12 11 
20 29 13 25 12 9 4 6 15 

Rest 206 201 315 120 166 96 164 173 
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  k 0.7709 0.789 0.823 0.6093 0.4727 0.4717 0.4036 0.5194 
  p 0.1093 0.1052 0.1046 0.0913 0.088 0.0885 0.0782 0.091 
 α 0.8992 0.8978 0.9104 0.9143 0.9306 0.9172 0.9409 0.9381 
 X2 69.09 44.53 101.86 50.83 47.01 35.9 27.43 28.77 

P 0 0.0005 0 0.0001 0.0002 0.0073 0.0712 0.0513 
DF 18 18 18 18 18 18 18 18 
a 0.5967 0.623 0.9076 0.904 1.4698 1.1495 1.5822 1.3702 
b -0.4532 -0.4698 -0.5711 -0.5766 -0.9058 -0.7454 -0.9393 -0.7960 
C 274.9587 243.4574 318.7885 115.5113 204.8422 127.1658 166.0769 185.9161 
R2 0.97 0.99 0.99 0.98 0.95 0.96 0.94 0.96 

 
Table 10f 

Distances between equal parts-of-speech 
(First row: order number of the text. First column: distance) 

 
d/T 41 42 43 44 45 46 47 48 

0 112 203 26 198 230 272 297 143 
1 357 542 73 405 484 599 623 388 
2 262 511 70 352 377 483 562 278 
3 196 341 42 327 287 354 435 231 
4 130 262 31 247 233 293 344 150 
5 105 227 22 166 189 244 250 137 
6 89 159 17 137 151 177 258 84 
7 71 142 12 106 114 137 198 95 
8 60 100 17 106 91 127 139 69 
9 63 90 11 79 85 109 115 52 
10 63 69 14 69 77 89 113 44 
11 39 75 4 67 52 66 96 44 
12 29 61 5 46 74 70 80 35 
13 27 54 6 54 48 61 72 16 
14 27 48 7 32 35 55 70 25 
15 31 47 3 29 38 45 51 25 
16 15 27 3 29 31 33 39 21 
17 16 31 8 33 22 26 33 20 
18 21 26 1 25 32 15 44 22 
19 20 27 7 23 22 27 38 13 
20 15 26 1 13 15 16 27 16 

Rest 154 268 27 218 243 296 333 167 
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k 0.365 0.5612 0.5401 0.6342 0.4522 0.4775 0.6146 0.3816 
p 0.072 0.0872 0.0899 0.0949 0.0792 0.0823 0.0932 0.0753 
α 0.9411 0.9391 0.9361 0.9283 0.9215 0.9243 0.9296 0.9311 
X2 22.23 88.86 31.35 71.97 37.01 60.91 69.13 38.77 
P 0.222 0 0.0262 0 0.0052 0 0 0.0031 

DF 18 18 18 18 18 18 18 18 
a 1.602 1.6304 1.8809 1.3311 1.1643 1.2603 1.2581 1.5122 
b -0.9742 -0.9373 -1.1182 -0.7754 -0.7467 -0.7866 -0.7432 -0.9345 
C 154.5795 249.1718 31.599 217.242 267.2656 318.2097 338.4312 179.4397 
R2 0.92 0.96 0.94 0.98 0.97 0.97 0.98 0.95 

 
Table 10g 

Distances between equal parts-of-speech 
(First row: order number of the text. First column: distance) 

 
d/T 49 50 51 52 53 54 55 56 

0 452 318 118 135 125 128 84 118 
1 677 588 310 266 363 332 273 311 
2 577 473 292 251 264 280 200 248 
3 549 417 184 201 204 255 163 150 
4 421 364 145 153 186 160 132 144 
5 309 242 137 108 116 143 109 121 
6 285 210 122 97 128 106 88 87 
7 224 184 78 77 93 96 62 86 
8 191 132 76 71 74 77 57 61 
9 148 109 55 43 53 79 37 38 
10 95 103 35 53 57 48 32 52 
11 106 86 42 48 41 42 48 39 
12 94 69 31 30 34 38 34 36 
13 88 66 25 20 24 33 28 37 
14 76 56 24 17 34 21 11 24 
15 50 51 21 25 19 26 18 24 
16 55 45 13 23 28 23 15 18 
17 43 38 12 22 20 11 8 18 
18 38 35 19 21 12 16 10 8 
19 37 33 11 9 19 18 10 13 
20 36 25 8 8 15 13 8 15 

Rest 451 340 170 156 174 170 124 148 
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k 0.6022 0.5469 0.5384 0.6165 0.4084 0.5802 0.4466 0.4182 
p 0.0878 0.0861 0.0848 0.0897 0.0773 0.0919 0.0835 0.0772 
α 0.9096 0.9202 0.9388 0.9264 0.94 0.9395 0.9458 0.9343 
X2 121.21 66.58 74.41 59.81 39.15 57.03 39.57 28.19 
P 0 0.0005 0 0 0.0027 0 0.0024 0.0593 

DF 18 18 18 18 18 18 18 18 
a 0.9398 1.1009 1.5334 1.3026 1.4224 1.5107 1.5494 1.3291 
b -0.6186 -0.686 -0.8792 -0.7717 -0.8366 -0.8503 -0.8814 -0.8142 
C 459.7704 345.5195 145.878 147.836 164.9233 155.1139 115.8548 151.8823 
R2 0.99 0.98 0.96 0.98 0.94 0.97 0.94 0.93 

 
Table 10h 

Distances between equal parts-of-speech 
(First row: order number of the text. First column: distance) 

 
d/T 57 58 59 60 61 62 63 

0 103 123 118 112 168 160 150 
1 208 330 284 261 369 407 395 
2 153 277 266 243 241 354 314 
3 114 228 177 161 213 286 238 
4 99 178 132 139 208 173 191 
5 75 150 111 118 157 185 172 
6 53 109 93 91 121 109 145 
7 54 103 72 75 104 91 69 
8 42 90 64 70 87 91 88 
9 24 78 45 50 66 85 64 
10 22 70 38 45 61 55 60 
11 17 50 36 45 52 44 54 
12 19 35 28 28 51 40 51 
13 14 48 35 26 45 32 36 
14 16 27 28 26 33 41 21 
15 14 20 25 17 31 27 29 
16 7 31 21 14 31 26 21 
17 11 18 20 11 28 25 20 
18 5 19 17 10 25 14 22 
19 9 17 17 12 10 17 13 
20 4 13 8 18 9 14 16 

Rest 117 178 147 131 172 212 185 
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k 0.3498 0.582 0.5398 0.6059 0.3962 0.5259 0.5003 
p 0.0655 0.0918 0.0839 0.0943 0.0798 0.0842 0.087 
 a 0.9127 0.9439 0.9338 0.9342 0.9264 0.9357 0.9363 
X2 37.14 33.45 37.21 37.25 54.08 79.59 51.75 
P 0.005 0.0147 0.0049 0.0049 0 0 0 

DF 18 18 18 18 18 18 18 
a 1.1842 1.3794 1.4606 1.3587 1.0215 1.5485 1.4210 
b -0.7953 -0.766 -0.8659 -0.789 -0.6428 -0.9015 -0.8329 
C 116.5316 156.4256 141.7161 133.2378 199.8833 192.342 187.1029 
R2 0.97 0.96 0.96 0.97 0.94 0.96 0.96 

 
While the C-values in the Zipf-Alekseev function represent the first frequency, the parameters 
a and b (i.e. the state of the language and the influence of the writer) are strongly associated. 
As can be seen in Table 11, there is a highly significant linear relationship between them. The 
relationship is computed separately for each president. 
 

Table 11 
Linear relationhips between the parameters a and b in Zipf-Alekseev function  

concerning the distances (x = a, y = b) 
 

President a,b linear fitting R2 

   
Einaudi y = - 0.2624 - 0.4105x 0.9424 
Gronchi y = - 0.1375 - 0.4645x 0.9622 
Segni y = - 1.1769 + 0.1796x 1.0000 
Saragat y = - 0.1297 - 0.5034x 0.8605 
Leone y = - 0.1156 - 0.5061x 0.9520 
Pertini y = - 0.2510 - 0.3520x 0.9708 
Cossiga y = - 0.1256 - 0.5182x 0.9517 
Scalfaro y = - 0.1180 - 0.5212x 0.9332 
Ciampi y = - 0.4521 - 0.2710x 0.8097 
Napolitano y = - 0.1317 - 0.4894x 0.9425 

  
 
4. Conclusion 
 
The class of POS considered here is very small, hence the results are quite uniform. The 
speeches do not diverge, showing that Italian is very stable in this respect. The Repeat rates 
display a very slow decrease with great dispersion, the opposite trend can be found with 
Entropy.  
 As can be seen, sometimes an approximation of the distribution of frequencies using a 
continuous function based on the same principles as its discrete counterpart but a slightly 
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changed “speaker force” may yield much more satisfactory results. All distributions of 
distances have a short concave part at the beginning which cannot be adequately captured by a 
discrete distribution even if one modifies P0. This is at the same time a good occasion to show 
that modelling is no capturing of “truth” or an intrinsic property of phenomena but merely our 
conceptual approach. It is the better the more acceptable is our deduction of the model based 
on linguistic circumstances and the easier its systematization in a theory.  
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 Models of morph lengths:  
Discrete and continuous approaches  
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 Peter Zörnig2 
 
 

Abstract. We discuss a discrete and a continuous approach for modelling the distribution of morph 
length. The proposed models (1-displaced extended binomial distribution, beta function) have been 
successfully fitted to Spanish, Russian and Slovenian data records. It can be shown that the models are 
suitable for modelling word form types as well as word form tokens. 

 
Keywords: Morph length, Spanish, Russian, Slovenian 

 
 

0.   Introduction  
  
Unlike sentence, syllable and word lengths, the distribution of the morph length has so far 
received little attention in the literature (see Best 2001, 2005a).  In the studies of Best it is 
assumed that the morph length basically follows the same laws as the word length, which can 
be justified linguistically by a variable proportional relationship or a generalized relation (see 
for example  Eq.  (1) and (3) in Best (2005 b)). It is now reasonable to try to fit these prob-
abilistic models to morph length distributions that have proved to be adequate for the word 
length. In particular, Best (2001) has successfully fitted the 1-shifted Hyperpoisson distribu-
tion to the distribution of morph lengths in journalistic texts of a German newspaper and 
Rottmann (2003) has fitted the extended positive binomial distribution (EPB) to word length 
distributions (measured in the number of syllables) of Latvian and Lithuanian texts. Gen-
erally, it is an inductive attempt to find a suitable model based on the proportionality approach 
of Wimmer and Altmann (2005). 

In the present paper, we show that the EPB is suitable to model the morph length 
distribution. We start with a data set of Saporta (1966), which is mentioned by Köhler and 
Altmann (2009: 78–79) as an open problem of quantitative linguistics. In addition, we provide 
new data sets from Russian and Slovenian, for which the EPB has also been proved 
appropriate. The morph length is measured in the number of phonemes and its determination 
is performed on the level of word form types and word form tokens.  Since the morph length 
is a discrete random variable it is natural to model it by means of a discrete probability model. 
However, in quantitative linguistics, continuous models have also been considered to describe 
discrete observations, since “discrete” and “continuous” are considered to be mere conceptual 
properties see for example Tuzzi et al. (2012, section 3) and in particular Mačutek and 
Altmann (2007). Therefore we also present as an alternative to the discrete approach a 
continuous model based on the beta function to describe the morph length. 
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1. Spanish data record (Saporta, 1966)  
  
Before re-analyzing the data from Saporta (1966: 69) it should be noted that the author does 
not provide further information about the performed morph segmentation. From the data 
record it is only evident that a class of zero-morphs is considered. To ensure the comparability 
of our study we do not consider zero morphemes3 as a separate class either in the re-analysis 
of the Spanish data or in our analysis of the Slovenian and Russian data. In Saporta (1966) the 
morph length has been measured in the number of phonemes. In Table 1, the observed morph 
frequency fx is listed as a function of the phoneme number x, wherein, as mentioned above, 
the class of the zero-morphs was omitted and the last five classes have been pooled.  
  

 Table 1 
Spanish morph lengths (Saporta 1966) 

 
 x  fx  discrete, NPx  continuous, y(x) 
 1   59   59.00         25.40 
 2   97  114.95       139.04 
 3   307   265.89       284.86 
 4   387   378.45       370.30 
 5   327   370.34       353.59 
 6   261   263.57       257.81 
 7   143   140.68       140.41 
 8   64   57.21         52.06 
 9   19   17.81         10.26 
 10   9   5.08           0.47 

EPB d.  n = 14,       p = 0.2625,        = 0.964,     C = 0.0097 
  Beta f. m = 0,  M = 11,  C = 0.000295,  a = 3.2027,  b = 4.9355,   R2 = 0.9736 

 
 
Based on the unified theory (cf. Wimmer, Altmann 2005) we suppose that the occurrence 
probabilities of magnitudes of properties develop in such a way that neighbouring classes stay 
in proportional relation to each other. Practically, 
 
(1) 1( )x xP f x P   
 
where f(x) is a proportionality function changing with x. In many cases it is simply the  ratio 
f(x) = g(x)/h(x), where g(x) contains a language constant and the function of change per-
formed by the speaker, and h(x) is the controlling function of the hearer. In our case we 
consider the possibility that the language constant is a, and the effect of the speaker is -bx, 
                                                 
3 The question of whether so-called zero-morphemes must be considered in the analysis of morphs 
must be decided prior to the examination. In our analysis no zero-morphemes are considered. 
However, one should bear in mind that considering a “zero” class causes a number of serious 
methodological and theoretical problems. The situation is quite similar to that of zero-syllabic words 
in Slavic languages – a problem which has been discussed at great length in Antić, Kelih and Grzybek 
(2006). When considering zero-classes in statistical modelling, in particular the following must be 
considered: the number of zero-morphemes is probably very low in any language and this low 
frequency presumably causes a “high jump” from this class to the class of morphemes of length 1, 
which in turn can lead to difficulties in modelling. 
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while the control function of the hearer is h(x) = cx. Inserting these assumptions into (1) we 
obtain 

(2) 1 1 1
( )( )
( )x x x x

g x a bxP f x P P P
h x cx  


   = 

a x
b

x


 
c
b Px-1 

 
By substituting a/b = n + 1 and b/c = p/q, we obtain the well-known recurrence formula 
 

(3) 1
1

x x
n x pP P

x q 
 

 , 

 
whose solution is the binomial distribution 
 

(4) , 0,1,...,x n x
x

n
P p q x n

x
 

  
 

. 

 
Now, since morphs of zero lengths are excluded, we truncate (4) at x = 1 and obtain the 
truncated binomial distribution 
 

(5) , 1,2,...,
1

x n x

x n

n p qP x n
x q

 
    

 .  

 
Since the first frequency, i.e. P1, yields in each case a special value, we displace the 
distribution one step to the right and define P1 separately by setting P1 = 1 – α. This yields a 
modified distribution that can be called 1-displaced extended binomial distribution  
(1-displaced EPB), defined as 
 

(6)          1 1

1 , 1

1
, 2,3,..., 1

1

x n x
x

n

x
nP p q

x
x n

q



   

 
        
 

       

 
where 0 <  ,p < 1, q = 1- p.  
 By means of the software Altmann-Fitter (1997), the EPB has been proved to be 
suitable for the Spanish data. 
 The probability P1 = 1-   is set equal to the corresponding relative frequency, i.e. the 
estimator ̂  satisfies 

(7)          1- ̂  = 
N
f1 ,                                                      

where N =
x

xf denotes the number of all morphs (sample size). The parameters p and n are 

iteratively determined.  
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 By fitting the 1-shifted EPB to the data in Table 1, we obtain the theoretical 
frequencies in the third column. The penultimate line of Table 1 lists the optimal parameter 

values n, p,   and the contingency coefficient C = 2 /N.  
Since the sample size is very large (here as well as in all following data sets) the chi-

square value is also high and, as is often done in quantitative linguistics in this case (see for 
example Rottmann (2003: 53)), one can use the coefficient C as a criterion to decide on the 
goodness of fit. A fit is considered good if C   0.01 and satisfactory if C   0.02. Therefore 
the fit of the EPB in Table 1 can be considered satisfactory. 
 Our continuous approach is based on the assumption that the relative rate of change of 
the morph frequency y is proportional to the rate of change of the number x of phonemes, i.e. 
 

(8)       
y

dy ~ dx. 

 
As in the discrete case we assume that the proportionality is not given by a constant but by a 
function g(x), involving impacts of speaker and hearer. This leads to 
 

(9)     
y

dy = g(x)dx. 

 
Now the function g(x) is composed of a difference of speaker and hearer portions. The former 
can be expressed as 
 

(10)     
mx

a


,  

 
where a is the speaker-force and m the minimum value of x. The farther away x is from m, the 
less the impact of the speaker is. Similarly, the hearer portion is expressed as 
 

(11)     
xM

b


,  

 
where b is the permanent force of the hearer and M the maximum value of x. The farther away 
x is from M, the stronger the impact of the hearer is. The two forces are considered to be in 
equilibrium. 
 Expressing the function g(x) in (9) by (10) and (11), we get the relation 
 

(12)     
y

dy = (
mx

a


– 
xM

b


)dx 

 
which has the simple solution 
 
(13)      y = C(x - m)a (M - x)b   for  m   x   M. 
 
This is a function with five parameters C, m, M, a and b (C > 0; m < M; a, b > -1) which can 
have many different shapes; for details see Altmann and Grotjahn (1988) and Köhler and 
Altmann (1986). The parameters m and M can be directly estimated from the observed 
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phoneme numbers. To ensure that the range [m, M] of the model contains the observed x-
values, it must hold m   xmin and M   xmax, where xmin and xmax are the minimum and 
maximum of the observed phoneme numbers, respectively. In the present article we have 
always chosen 
 
(14)          m = xmin - 1   and   M = xmax + 1. 
 

We fitted (13) to the data in Table 1, where m and M have been chosen as in (14) and 
C, a, b are considered as three freely selectable parameters (C > 0; a, b > -1) which have been 
optimized iteratively. The optimal values of C, a and b and the coefficient of multiple 
determination R2, used as a measure for the “goodness of fit”, are listed in the last line of  
Table 1. The coefficient R2, also known as “proportion of variance explained”, is defined by  
 

(15)  R2 = 1 - 







x
x

x
x

ff

xyf

2

2

)(

))((
                                                 

where f  = 
1

1

minmax  xx 
x

xf  = 
1minmax  xx

N  is the mean of the observed frequencies.  

The frequencies predicted by the continuous model, i.e. the values y(x) obtained from (13) for 
the optimal parameter values, are shown in the last column of Table 1. A fit is considered 
very good if R2 > 0.9 (Altmann 1997), so the fit of the continuous model can be considered as 
very good. 
 As an alternative to the continuous model above where C is assumed to be a free 
parameter, we could consider C as the normalizing constant. In this case the curve (13) 
becomes the density of the beta distribution on the interval [n, M], in which C is expressed in 
terms of the other four parameters as 
 

(16)      C = 1
( 2)

( 1) ( 1)( )a b
a b

a b M m  

  
    

,  

 
where  denotes the gamma function. This density with the four parameters m, M, a and b 
could be fitted to the observed data (where the optimal values of a and b in the last line of 
Table 1 could be used as starting values for the iterative fitting). However, we will not pursue 
this idea in the present article. 
 
 
2. New data record: Russian 
 
The focus of the analysis to be carried out is the morph length in Russian. For this purpose we 
study the Russian novel “Kak zakaljalas’ stal’ (KZS)” by N. Ostrovskij; see Kelih (2009a, 
2009b). For comparison purposes we also examine the Slovenian translation of this text, i.e. 
we study the morph length in a South Slavic and in an East Slavic language. In each case only 
the first chapter is considered. The investigation steps are: 
 
1. These texts are subjected to a tagging procedure, in which chapter headings, abbrevi-

ations, digits etc. are processed by a common principle (cf. Antić, Kelih and Grzybek 
(2006)), i.e. omitted.  
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2. The word form is determined according to orthographic criteria (Kelih (2007)), i.e. each 
sequence which is separated by a space is regarded as one word form. The hyphen is 
considered to have a delimiting function.  

3. In the created lists of word form types the number of morphs per word form is determined 
manually. Further details of the segmentation are given in the language-specific analyses 
below.  

4. Zero-morphemes are not considered in the segmentation. The length of a morpheme is 
measured in the number of phonemes. 

5. Only word forms with a frequency greater than one are analyzed4. 
6. The morph length is determined at the level of word form types and word form tokens. 

Thus the behaviour of the morph length can be modelled and compared both on the 
paradigmatic and syntactic level. 

The morphological segmentation causes a series of theoretical problems, since – as with other 
linguistic units – a whole range of different definitions of morph or morpheme is provided.  
Slovenian as well as Russian are both, typologically, highly inflectional languages, so the 
morphological segmentation can be done by means of the same analytical procedure. 

For the present analysis a pragmatic approach has been chosen. The segmentation is 
based on Russian morphological dictionaries, which provide in-depth morphological inform-
ation about Russian word forms. For Russian the (exemplary) morphological dictionary by 
Kuznecova and Efremova (1986), which provides a detailed morphological segmentation of 
more than 52,000 Russian lexemes (for details see Kempgen (1999)), was used. As another 
reference source for Russian we used Tichonov (2002). To give at least one example of the 
performed segmentation: the Russian verb form vyneslas’ (3.P. f. Sg. Past Tense, reflexive) is 
segmented into {vy} (prefix) – {nes} (root) – {l} (suffix, marking past tense) – {a} (suffix 
marking feminine) –{s’} (postfix, marking of reflexivity), resulting in one morph with three 
phonemes, three morphs with one phoneme and one morph with two phonemes.  
 The fitting of both models to the Russian data is illustrated in Table 2 for the data at 
the level of word form types and in Table 3 for word form tokens. One empirical fact of the 
analyzed texts is worth mentioning: in both cases the most frequent morph has the length of 
one phoneme, which can presumably be explained by the fact that Russian is a highly 
inflectional language, where just one phoneme can be the carrier of different grammatical 
information. A rather similar picture can be seen in the Slovenian data. 
 

Table 2 
Russian morph lengths (Types) 

 
 x  fx  discrete, NPx  continuous, y(x) 
 1               623         623.00      614.73 
 2               223         239.92      281.42 
 3               242         218.26      160.04 
 4                 95         115.82        96.73 
 5                 48           39.51        58.32 
 6                 11             8.99        33.24 
 7                   2            1.36        16.43 
 8                   3            0.14          5.51 

 EPB 1-d.  n = 9,     p = 0.1853,        = 0.5004,       C = 0.0033 
  Beta f. M = 0,  M = 9,  C = 32.6042,  a = -0.8552,   b = 1.4123,  R2 = 0.9649 

                                                 
4 This approach results from the fact that elsewhere a separate analysis of the Hapax Legomena has 
been made (Kelih 2011) and the same word-form lists are used here. 
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Table 3 
Russian morph lengths (Tokens) 

 
 x  fx  discrete, NPx  continuous, y(x) 
 1               2518          2518.00          2498.78 
 2               1200          1190.86          1331.57 
 3                986            907.98            743.09 
 4                290            423.07            399.66 
 5                168            134.41            196.05 
 6                  38              30.74              81.32 
 7                   4                5.21              24.42 
 8                   7                0.73                3.28 

 EPB 1-d.  n = 13,      p = 0.1127,        = 0.5168,     C = 0.0117 
  Beta f. m = 0,  M = 9,  C = 6.9700,  a = -0.3632,   b = 2.8286,   R2 = 0.9832 

 
All fittings of this section can be considered good or satisfactory. A first indication is given 
that the EPB distribution and the used beta function are suitable to model Russian morph 
lengths. 
 
 
3. New data record: Slovenian 
 
Unlike the Russian, for the segmentation of Slovenian word forms there are not so many 
reference books (morphological and word formation dictionaries) available. Nevertheless the 
morphological segmentation was performed in analogy to the Russian analysis. 
 The prefixes, stems and suffixes have been identified step by step (as described in 
Topori�ič (2000: 149) and SSKJ (1970ff), which were used as the main resources for the 
determination of the morphs). Other word formation issues were resolved with the help of 
Stramljič-Breznik’s (2004) analysis.The “depths” of the morpheme identification are identical 
to the segmentation of the Russian data. Tables 4 and 5 show the corresponding fittings for 
the two Slovenian data records. 

 
Table 4 

Slovenian morph lengths: word form types 
 

 x  fx  discrete, NPx  continuous, y(x) 
 1                453           453.00           440.86 
 2                258           276.86           313.96 
 3                284           251.10           216.51 
 4                136           147.08           139.46 
 5                 64            62.53            79.95 
 6                 22            20.56            36.85 
 7                  1              6.89              9.91 

 EPB 1-d.  n = 33,     p = 0.0536,       = 0.6281,      C = 0.0054 
   Beta f. m = 0,  M = 8,  C = 11.4039,  a = -0.0720,   b = 1.8782,   R2 = 0.9486 
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Table 5 
Slovenian morph lengths: word form tokens 

 
 x  fx  discrete, NPx  continuous, y(x) 
 1              1963         1963.00         1970.92 
 2              2170         2050.24         2145.73 
 3              1178         1284.23         1213.25 
 4               424           509.47           430.79 
 5               188           143.60             89.26 
 6                62            30.58              7.84 
 7                 2             5.88              0.10 

 EPB 1-d. n = 21,   p = 0.0589,     = 0.6721,    C = 0.0098 
   Beta f. m = 0,  M = 8,  C = 0.0041,  a = 1.6186,   b = 6.7270,  R2 = 0.9971 

 
Both considered models have proved to be suitable also for Slovenian data. 
 
 
4.  Concluding remarks  
  
In the present study we consider a discrete model for the morph length distribution for Span-
ish, Slovenian and Russian data, which requires three parameters. It should be mentioned at 
this point that, considering a language individually, more suitable discrete models than the 
EPB come into play. However, the EPB is the only distribution (out of the stock of about 200 
discrete distributions available with the Altmann-Fitter (1997)) which could be fitted to all 
five data records. Since the data sets in Tables 1–5 have very small classes for large lengths, 
we have pooled the classes so that the minimum class size is 50. 

Choosing a continuous function, we restricted ourselves to the beta function. The use 
of this continuous function is satisfactory for all analyzed languages. In any case, it could be 
shown that for the newly analyzed data (Slovenian, Russian) the same probabilistic model can 
be employed, both for the type as well as the token level. It appears that in addition to the 1-
shifted Hyperpoisson distribution (cf. Best (2005a: 258)) also the EPB distribution and the 
Bbeta function can be considered as good models for the distribution of the morph length. 
Since only a small number of languages and texts have been investigated to date, further 
studies of other languages are indispensable in future. Furthermore, the impact of the used 
(different) morph segmentation should be analyzed in detail.  
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Abstract. This paper investigates the length distribution and the complexity of NPs of written English 
using the written section of the ICE-GB corpus as the data source. The results show that NPs have 
very complex patterns. The distribution of NPs and their patterns is affected by NP length. Such 
relationships can be exactly described with mathematic models.  
 
Key words: NP, pattern, length, frequency, distribution, model 
 

1. Introduction 
NPs are essential components of sentences and have received attention from generations of 
linguists. Different grammars, whatever their theoretical frames, deal with NPs as to its 
components and syntactic functions. The methods used by these linguists are mainly 
qualitative. The present study approaches NPs from a different angle using the quantitative 
methods, focusing on the length of NPs and its relationship with the structure and complexity 
of NPs. 

Length of linguistic units plays a very important role in quantitative linguistics and is an 
essential measurement in synergetic linguistics (Köhler, 2005). There have been a large num-
ber of publications on length of linguistic constructs, such as word and sentences length and 
their interrelations with other linguistic components (Menzerath 1928; Altmann, 1980, 1988; 
Wimmer, Köhler, Grotjahn & Altmann, 1994; Wimmer & Altmann, 1996; Grzybek, Kelih &, 
Stadlober, 2008; Fan, Grzybek & Altmann, 2010; Levitsky & Melnyk, 2011). For example, 
Altmann (1988) studied sentence length and concluded that it may depend on many different 
factors, such as sentence complexity, sentence structure, text length and so on. Wimmer and 
Altmann (1996) examined word length distributions and discovered that the compound 
Poisson and Ord family model can best capture word length distributions in language. 
However, literature concerning the quantitative study on the major sublevels of the sentence, 
the phrase, is few and far between. This paper intends to tackle the quantitative aspects of the 
noun phrase (NP) such as its length, structures, its structural complexity and the distribution 
of its structures with different length. NP structures are described in terms of their patterns. 
For example, a grammatical description of the NP a big red apple has the structure determiner 
adjective adjective noun. NP length is based on the number of syntactic components of the 
phrase rather than the number of words. NP complexity is described in terms of the number of 

                                                        
1 Address correspondence to: whdeworld@yahoo.cn 
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different NP patterns NPs of certain length may have. For example, If NPs all have the pattern 
determiner noun, then there is no complexity in NP structures. However, in actuality NP 
structures must be much more varied than that.  

NPs have premodifiers and postmodifiers. The latter is extremely messy to deal with 
since postmodifiers can be very long and complex, containing in turn other NPs with their 
own premodifiers or postmodifiers. In the present study, the NP postmodifier, irrespective of 
the number of their syntactic components, is regarded as one single syntactic component of 
the preceding NP, but the NPs in the postmodifiers are all counted as NPs. For example, in the 
sentence this is the dog that chased the cat that killed the mice that ate the rice there are 4 
NPs, i.e., the dog that…, the cat that…, the mice that… and the rice. Their NP structures are 
respectively article noun postmodifier-clause, article noun postmodifier-clause, article noun 
postmodifier-clause and article noun, and the length of these NPs are respectively 3, 3, 3, and 
2. Another example is the structure of the NP the man with a large green umbrella, and its NP 
structure is article noun postmodifier-prepositional phrase, and in the prepositional phrase, 
there is another NP. The length of the main NP is 3, and that of the nested NP is 3 as well: 
article adjective adjective noun, i.e., a large green umbrella. The main NP contains 7 words 
but its length is three. 

 
2. The Data 
                                          
The ICE-GB corpus was used as the data source. It is a 1,000,000-word corpus of 
contemporary British English, which contains both ICE-GBS (corpus of spoken English) and 
ICE-GBW (corpus of written English). The former contains 300 2,000-texts totalling about 
600,000 words, while the latter 200 texts totalling about 400,000. These texts are 
grammatically tagged. Since the study focuses on NPs of written English, only ICE-GBW was 
used. The syntactic tags of NP components were extracted for the study of NP length and 
structures. The frequencies of NPs of different patterns were also calculated. Table 1 displays 
the major syntactic tags used in ICE-GBW and the NP components they represent. 
 

Table 1 
Major syntactic tags and the NP components they represent 

 
A adverbial 
ADJ adjective 
ADV adverb 
AJHD adjective phrase head 
AJP adjective phrase 
AJPO adjective phrase postmodifier 
AJPR adjective phrase premodifier 
ART article 
AUX auxiliary 
AVB auxiliary verb 
AVHD adverb phrase head 

AVP adverb phrase 
AVPO adverb phrase postmodifier 
AVPR adverb phrase premodifier 
CF focus complement 
CJ conjoin 
CL clause 
CLEFTIT cleft it 
CLOP cleft operator 
CO object complement 
COAP appositive connector 
CONJUNC conjunction 
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CONNEC connective 
COOR coordinator 
CS subject complement 
CT transitive complement 
DEFUNC detached function 
DISMK discourse marker 
DISP disparate 
DT determiner 
DTCE central determiner 
DTP determiner phrase 
DTPE predeterminer 
DTPO determiner postmodifier 
DTPR determiner premodifier 
DTPS postdeterminer 
ELE element 
EMPTY empty 
EXOP existential operator 
EXTHERE existential there 
FNPPO floating NP postmodifier 
FOC focus 
FRM formulaic expression 
GENF genitive function 
GENM genitive marker 
IMPOP imperative operator 
INDET indeterminate 
INTERJEC interjection 
INTOP interrogative operator 
INVOP inverted operator 
MVB main verb 
N noun 
NADJ nominal adjective 
NONCL nonclause 
NOOD notional direct object 
NOSU notional subject 
NP noun phrase 
NPHD noun phrase head 
NPPO noun phrase postmodifier 
NPPR noun phrase premodifier 

NUM numeral 
OD direct object 
OI indirect object 
OP operator 
P prepositional 
PARA parataxis 
PAUSE pause 
PAUSE pause 
PC prepositional complement 
PMOD prepositional modifier 
PP prepositional phrase 
PREDEL predicate element 
PREDGP predicate group 
PREP preposition 
PROD provisional direct object 
PROFM proform 
PRON pronoun 
PRSU provisional subject 
PRTCL particle 
PS stranded preposition 
PU parsing unit 
PUNC punctuation 
PUNC punctuation 
REACT reaction signal 
SBHD subordinator phrase head 
SBMO subordinator phrase modifier 
SU subject 
SUB subordinator 
SUBP subordinator phrase 
TAGQ tag question 
TO particle to 
TO 'to' infinitive marker 
UNTAG missing/unidentifiable items 
UNTAG untag 
V verb 
VB verbal 
VP verb phrase

In ICE-GB, all the NPs have an NP head symbolized by the tag NPHD and a postmodifier 
symbolized by the tag NPPO; these two tags are kept in the extracted data but do not count as 
an independent NP component. For example, the NP structure ART ADJ NPHD-N NPPO-CL 
has 4 components, instead of 6. NPHD-N means the noun phrase head is a noun, while 
NPPO-CL means the noun phrase postmodifier is a clause. 
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3. Length and NP frequency 
 
The 430,416-word ICE-GBW contains 27,647 sentences, averaging 15.57 words per sentence. 
The total number of NPs is 115,809. As the length of NPs increases, the number of NPs with 
such length decreases. NPs with only one syntactic component have the largest number, 
44,629, and those with 15 components have only two occurrences. Table 2 shows NP length 
and its corresponding NP frequency.  
 

Table 2 
 NP length and its corresponding frequency 

 

Length Frequency 

1 44629 
2 33844 
3 24681 
4 8477 
5 2629 
6 960 
7 352 
8 138 
9 54 
10 21 
11 10 
12 8 
13 4 
15 2 

 
The exponential regression model can best capture the relationship between NP length 

and NP occurrences. The exponential regression model is in the following form: 

(1)  
bxaey   

The frequency of NPs and their corresponding length can be described with the following 
exponential model (Nfreq = NP frequency, Nlen = NP length; a, b: model parameters): 

 (2)  lenbN
freq aeN   

The fit is good, with R2 = 0.980, a = 136677.074, b = −08135. Figure 1 displays the model fit.  
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Figure 1. The exponential regression model fit to the NP frequency curve. The solid line: 

the model fit, the small circles, the observed value 
 
 
4. Distribution of NP types and patterns 
 
Of all the 115,809 NPs, there are 1,894 different patterns. This shows the complexity of NP 
structures. These NPs can be classified into the following types: bare NPs, i.e., NPs with a 
bare head; determiner + NPHD; Premodifier + NPHD; Postmodifirer + NPHD and 
Premodifier + NPHD + Postmodifier. The NPs of the type bare NP/Det+NPHD are the most 
frequently used, totalling 70,790, accounting for 61.13/% of all the NPs. Detailed information 
on the distribution of NP types is in Table 3. 
 

Table 3 
 Distribution of NP types 

 
Type Frequency Percentage 

Bare NP/Det+NPHD 70790 61.13/% 
Pre+NPHD 13744 11.87% 
Post+NPHD 24027 20.75% 

Pre+NPHD+Post 7248 6.25% 
Total 115809 100% 

 
The complexity of NPs of different length is shown in Table 4. NPs with length 5 have 439 
different patterns, and those with length 15 have only 2.  
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Table 4 
NP length and the corresponding patterns 

 

Length Number of 
Patterns Examples 

1 4  NPHD-N 
2 53 NPHD-N NPPO-PP 
3 183 ADV ADJ NPHD-N 
4 341 ADV ART NUM NPHD-N  
5 439 ART ADJ CONJUNC NUM NPHD-N 

6 405 ART ADJ ADJ NPHD-N PUNC 
NPPO-AVP 

7 244 ADV ART ADV ADJ ADJ NPHD-N 
NPPO-PP 

8 128 ADJ NPHD-N CONJUNC ART ADJ ADJ 
NPHD-N NPPO-NP 

9 52 ART ADV ADJ NPHD-N COMJUNC 
ART ADV ADJ NPHD-N 

10 21 
ART ADJ NPHD-N COMJUNC ADV 
ART ADV ADJ CONJUNC ADJ 
NPHD-PRON 

11 10 ART ADJ ADJ NPHD-N CONJUNC ART 
ADV ADJ CNOJUNC ADJ NPHD-N 

12 8 
PRON ADJ CONJUNC ADJ NPHD-N 
CONJUNC ADV PRON NUM ADJ ADJ 
NPHD-N 

13 4 
ADJ CONJUNC ADJ ADJ ADJ NPHD-N 
CONJUNC AUX ASV V PERP ADJ 
NPHD-N 

15 2 
ART ADJ ADJ ADJ COMJUMC ADJ 
NPHD-N CONJUNC ART ADJ ADJ ADJ 
COMJUNC ADJ NPHD-N 

 
The following are the 183 different NP patterns for NPs with length 3: 
 
1. ADJ ADJ NPHD-N 
2. ADJ ADJ NPHD-PRON 
3. ADJ ADV NPHD-N 
4. ADJ CONJUNC NPHD-N 
5. ADJ NPHD-N NPHD-N 
6. ADJ NPHD-N NPHD-PRON 
7. ADJ NPHD-N NPPO-AJP 
8. ADJ NPHD-N NPPO-AVP 
9. ADJ NPHD-N NPPO-CL 
10. ADJ NPHD-N NPPO-NP 
11. ADJ NPHD-N NPPO-PP 
12. ADJ NPHD-NUM NPHD-N 
13. ADJ NPHD-PRON NPPO-CL 
14. ADJ NPHD-PRON NPPO-PP 

15. ADJ NUM NPHD-N 
16. ADJ PREP NPHD-PRON 
17. ADJ PUNC NPPO-AJP 
18. ADJ PUNC NPPO-AVP 
19. ADJ PUNC NPPO-CL 
20. ADJ PUNC NPPO-DISP 
21. ADJ PUNC NPPO-PP 
22. ADJ UNTAG NPHD-N 
23. ADV ADJ NPHD-N 
24. ADV ADJ NPHD-PRON 
25. ADV ADV NPHD-N 
26. ADV ADV NPHD-NUM 
27. ADV ADV NPHD-PRON 
28. ADV ART NPHD-N 
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29. ADV ART NPHD-NADJ 
30. ADV ART NPHD-NUM 
31. ADV NPHD-N NPHD-N 
32. ADV NPHD-N NPPO-AVP 
33. ADV NPHD-N NPPO-CL 
34. ADV NPHD-N NPPO-DISP 
35. ADV NPHD-N NPPO-NP 
36. ADV NPHD-N NPPO-PP 
37. ADV NPHD-NUM NPPO-AVP 
38. ADV NPHD-NUM NPPO-CL 
39. ADV NPHD-NUM NPPO-NP 
40. ADV NPHD-NUM NPPO-PP 
41. ADV NPHD-PRON NPPO-AJP 
42. ADV NPHD-PRON NPPO-CL 
43. ADV NPHD-PRON NPPO-PP 
44. ADV NUM NPHD-N 
45. ADV PRON NPHD-N 
46. ADV PRON NPHD-PRON 
47. ADV PUNC NPPO-CL 
48. ART ADJ NPHD-N 
49. ART ADJ NPHD-NADJ 
50. ART ADJ NPHD-NUM 
51. ART ADJ NPHD-PRON 
52. ART ADV NPHD-N 
53. ART ADV NPHD-NADJ 
54. ART ADV NPHD-PRON 
55. ART ART NPHD-N 
56. ART NPHD-N NPHD-N 
57. ART NPHD-N NPPO-AJP 
58. ART NPHD-N NPPO-AVP 
59. ART NPHD-N NPPO-CL 
60. ART NPHD-N NPPO-DISP 
61. ART NPHD-N NPPO-NP 
62. ART NPHD-N NPPO-PP 
63. ART NPHD-NADJ NPHD-N 
64. ART NPHD-NADJ NPPO-AVP 
65. ART NPHD-NADJ NPPO-CL 
66. ART NPHD-NADJ NPPO-PP 
67. ART NPHD-NUM NPHD-N 
68. ART NPHD-NUM NPPO-AVP 
69. ART NPHD-NUM NPPO-CL 
70. ART NPHD-NUM NPPO-NP 
71. ART NPHD-NUM NPPO-PP 
72. ART NPHD-PRON NPHD-PRON 
73. ART NPHD-PRON NPPO-CL 
74. ART NPHD-PRON NPPO-PP 
75. ART NUM NPHD-N 
76. ART NUM NPHD-NADJ 
77. ART NUM NPHD-NUM 
78. ART NUM NPHD-PRON 
79. ART PREP NPHD-N 
80. ART PRON NPHD-N 
81. ART PUNC NPPO-AJP 
82. ART PUNC NPPO-AVP 
83. ART PUNC NPPO-CL 
84. ART PUNC NPPO-DISP 
85. ART PUNC NPPO-NP 

86. ART PUNC NPPO-PP 
87. ART UNTAG NPHD-N 
88. CONJUNC ADV NPHD-PRON 
89. CONNEC PUNC NPPO-PP 
90. NPHD-N CONJUNC NPHD-N 
91. NPHD-N CONJUNC NPHD-NADJ 
92. NPHD-N CONJUNC NPHD-NUM 
93. NPHD-N CONJUNC NPHD-PRON 
94. NPHD-N NPHD-N NPHD-N 
95. NPHD-N NPHD-N NPPO-AVP 
96. NPHD-N NPHD-N NPPO-CL 
97. NPHD-N NPHD-N NPPO-NP 
98. NPHD-N NPHD-N NPPO-PP 
99. NPHD-N NPHD-NUM NPHD-N 
100. NPHD-N NPHD-NUM NPPO-CL 
101. NPHD-N NPHD-NUM NPPO-PP 
102. NPHD-N PUNC NPPO-AJP 
103. NPHD-N PUNC NPPO-AVP 
104. NPHD-N PUNC NPPO-CL 
105. NPHD-N PUNC NPPO-DISP 
106. NPHD-N PUNC NPPO-NP 
107. NPHD-N PUNC NPPO-PP 
108. NPHD-NADJ CONJUNC NPHD-N 
109. NPHD-NADJ CONJUNC NPHD-NADJ 
110. NPHD-NUM CONJUNC NPHD-N 
111. NPHD-NUM CONJUNC NPHD-NUM 
112. NPHD-NUM CONJUNC NPHD-PRON 
113. NPHD-NUM NPHD-N NPPO-NP 
114. NPHD-NUM NPHD-N NPPO-PP 
115. NPHD-NUM NPHD-NUM NPPO-PP 
116. NPHD-NUM PUNC NPPO-AJP 
117. NPHD-NUM PUNC NPPO-AVP 
118. NPHD-NUM PUNC NPPO-CL 
119. NPHD-NUM PUNC NPPO-NP 
120. NPHD-NUM PUNC NPPO-PP 
121. NPHD-PRON CONJUNC NPHD-N 
122. NPHD-PRON CONJUNC NPHD-NADJ 
123. NPHD-PRON CONJUNC NPHD-PRON 
124. NPHD-PRON NPHD-N NPPO-CL 
125. NPHD-PRON NPHD-N NPPO-PP 
126. NPHD-PRON NPHD-PRON NPPO-PP 
127. NPHD-PRON PUNC NPPO-AJP 
128. NPHD-PRON PUNC NPPO-CL 
129. NPHD-PRON PUNC NPPO-PP 
130. NUM ADJ NPHD-N 
131. NUM ADJ NPHD-PRON 
132. NUM ADV NPPO-PP 
133. NUM ART NPHD-N 
134. NUM NPHD-N NPHD-N 
135. NUM NPHD-N NPPO-AJP 
136. NUM NPHD-N NPPO-AVP 
137. NUM NPHD-N NPPO-CL 
138. NUM NPHD-N NPPO-DISP 
139. NUM NPHD-N NPPO-NP 
140. NUM NPHD-N NPPO-PP 
141. NUM NPHD-NUM NPHD-NUM 
142. NUM NPHD-NUM NPPO-PP 
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143. NUM NUM NPHD-N 
144. NUM PRON NPHD-N 
145. NUM PUNC NPPO-AVP 
146. NUM PUNC NPPO-CL 
147. NUM PUNC NPPO-PP 
148. NUM UNTAG NPHD-N 
149. PREP ART NPHD-N 
150. PREP NPHD-N NPPO-CL 
151. PREP PRON NPHD-N 
152. PRON ADJ NPHD-N 
153. PRON ADJ NPHD-NADJ 
154. PRON ADJ NPHD-NUM 
155. PRON ADJ NPHD-PRON 
156. PRON ADV NPHD-N 
157. PRON ADV NPHD-NADJ 
158. PRON ART NPHD-N 
159. PRON ART NPHD-NADJ 
160. PRON ART NPHD-NUM 
161. PRON NPHD-N NPHD-N 
162. PRON NPHD-N NPHD-NUM 
163. PRON NPHD-N NPPO-AJP 

164. PRON NPHD-N NPPO-AVP 
165. PRON NPHD-N NPPO-CL 
166. PRON NPHD-N NPPO-DISP 
167. PRON NPHD-N NPPO-NP 
168. PRON NPHD-N NPPO-PP 
169. PRON NPHD-NADJ NPPO-CL 
170. PRON NPHD-NADJ NPPO-PP 
171. PRON NPHD-NUM NPHD-N 
172. PRON NPHD-NUM NPPO-AVP 
173. PRON NPHD-NUM NPPO-CL 
174. PRON NPHD-NUM NPPO-PP 
175. PRON NPHD-PRON NPPO-CL 
176. PRON NPHD-PRON NPPO-PP 
177. PRON NUM NPHD-N 
178. PRON NUM NPHD-PRON 
179. PRON PRON NPHD-N 
180. PRON PRON NPHD-PRON 
181. PRON PUNC NPPO-PP 
182. PRON UNTAG NPHD-N 
183. UNTAG NPHD-N NPPO-NP

 
 Nemcová and Serdelová (2005) use the following to describe the relationship between the 
number of synonyms (y) of a word and the length of the word in syllables x: 

(3)  1b cxy ax e      
(3) is a special case of Wimmer & Altmann (2005). This relationship also holds for NP length 
(Nlen) and the number of NP patterns (Npattern) NPs have with the corresponding length: 

(4)  1lencNb
pattern lenN aN e   

The fit is very good. R2 = 0.991, a = 2.0369, b = 8.8827 and c = -1.7831. Figure 2 is the 
model fit.  

 
Figure 2. The relationship between NP length and the number of patterns NPs with cor-
responding length have. Solid line: model fit, small circles: the observed value. 
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5. Conclusion 
 
This study reveals the complexity of NPs and the relationship among NP length, NP 
frequency and NP patterns. A 400,000-word ICE-GBW has 1,894 different types of NPs. 
Shorter NPs generally have higher occurrences and NPs with 5 components have the highest 
complexity. Such relationships can be exactly described with mathematic models.  
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History of Quantitative Linguistics 
 

Since a historiography of quantitative linguistics does not exist as yet, we shall present in this 
column short statements on researchers, ideas and findings of the past – usually forgotten – in 
order to establish a tradition and to complete our knowledge of history. Contributions are 
welcome and should be sent to Peter Grzybek, peter.grzybek@uni-graz.at. 
 

Harry Dexter Kitson (1886-1959) 
 

Peter Grzybek 
 
 
Harry Dexter Kitson, born in 1886 in Mishawaka, Indiana, taught applied psychology at 
Teachers' College, Columbia University. He was a charter member of the American Psychol-
ogical Association and a pioneer in the field of vocational guidance. His main field of profes-
sional interest throughout his life (see references below), and it would definitely be incorrect 
to rank him among the precursors of quantitative linguistics. Yet, some ideas and analyses 
represented in his 1921 book The Mind of the Buyer. A Psychology of Selling illustrate the 
need of his time for a solid basis in linguostatistics and quantitative linguistics, and therefore 
deserve mention in an historical flashback. 
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Kitson’s booklet was meant to be a guide in advertisement strategies for salesmen, in his 
words “every one who is engaged in influencing men to buy” (p. v). For Kitson, such a work 
must necessarily be based on theoretical psychology and deal with profound psychological 
questions, particularly mental processes such as attention, interest, desire and confidence 
(ibd., v).  
 With this orientation and phrasing, Kitson’s booklet was a typical child of its time. 
After all, the booklet was published in the very same year when the famous AIDA formula was 
first used as an acronym by C.P. Russell (1921) to refer to the relevant components (or steps, 
as which they were considered at that time) of successful advertising: “attract Attention, 
maintain Interest, create Desire and get Action”. Such components were usually traced back 
to psychological theories of that time (usually related to some kind of association psych-
ology).  
 Yet, although Russell is considered to have casted this concept into a concise verbal 
form – i.e., the AIDA formula –, he is not responsible for having developed the general idea 
and concept behind it.  It is commonly held that it is American advertising and sales pioneer 
Elias St. Elmo Lewis who should be credited for having established the term and approach in 
1903: postulating at least three principles to which a successful advertisement should con-
form, for Lewis, the “mission of an advertisement” was “to attract a reader […]; then to inter-
est him, […]; then to convince him […].” The first published instance of the general concept 
seems to be a 1904 article by Frank Hutchinson Dukesmith, according to whom the four most 
important steps were attention, interest, desire, and conviction. Later important references are 
Ralph Starr Butler’s (1911) Advertising, Selling, and Credits. Part II: Selling and Buying, 
with a whole chapter on “Principles of Salesmanship” (p. 410ff.) focusing on attention, in-
terest, desire, action. Butler, in turn, refers to Arthur F. Sheldon, founder of the Sheldon 
School of Scientific Salesmanship, and his 1911 book The art of selling, for business colleges, 
containing similar ideas.  
 In this respect, Kitson’s approach is not genuinely innovative. What makes him differ 
from preceding approaches, however, is his definition and treatment of what he termed the 
“collective buyer”. According to him, persons who are served by a given selling medium 
constitute a collectivity. For Kitson, such a public is not a simple arithmetic summation of 
individual minds, nor is a some kind of super-mind transcending its components (ibd., 54). 
For him, newspapers and magazines offer good evidence of the existence of the collective 
mind: “psychologically speaking, the readers of a sales medium constitute an entity, a public, 
which is not a loose aggregation of isolated and individual minds but an organic union, 
coalesced into one collective mind” (ibd., 55). Furthermore, each public is unique, and readers 
of different newspapers differ from each other, what does of course not exclude the possibility 
that a given individual may belong to more than one public.  
 In trying to develop measurements of such publics which, in Kitson’s terms, are 
“buying publics” (ibd., 56), Kitson suggests to study a number of relationships, mainly geo-
graphical, economic, sociological, and psychological. In his effort to establish some kind of 
“yard sticks” for the psychological, or mental, dimension (including ideas, feelings, motives), 
Kitson suggested, among others, the analysis of linguistic criteria of different journals and 
newspapers. Admitting that the kind of measures he suggested are still very fragmentary (ibd., 
63), he suggested to concentrate on word length and sentence length, which he considered to 
be indicators of psychological differences between periodicals. 
 With regard to word length, Kitson first chose the Chicago Evening Post and the 
Chicago American for his analyses. From the editorial, news and feature columns of six 
parallel issues of each of these two papers, ca. 5000 words were taken in consecutive order 
and tabulated according to the number of syllables they contained. Likewise, two magazines 
were analyzed, the Century and the American magazines. Unfortunately, Kitson did not give 
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the complete results, concentrating on words with more than two syllables only. The data are 
represented in Table 1.  
 

Table 1 
 

Word Length   
  > 2 > 3 > 4 > 5 

Chicago Evening Post 13,20 4,60 1,20 0,00 
Chicago American 7,70 2,70 0,70 0,00 
Century 13,50 4,30 1,00 0,20 
American 9,90 2,70 0,60 0,10 

 
In Kitson’s interpretation, the results show that the number of words with more than two 
syllables in the Post is greater than that in the American by ca. 71%, a ratio approximately 
holding for all the polysyllabic words. The results of the magazine analyses are quite similar 
to the ones from the newspaper analysis; here, the number of words with more than two 
syllables in the Century is greater than the corresponding number in the American by ca. 36%. 
Kitson therefore concludes that the two journals and the two magazines clearly differ in their 
profiles. 
 A re-analysis of his data shows that his interpretation, albeit correct, is not unproblem-
atic: first and foremost, because the dominating amount of one- and two-syllable words have 
been totally omitted from the analyses – after all, their percentage is > 90% in all cases, 
ranging from 90.8% to 95% across the four samples. But even concentrating on the word 
length frequencies of words with more than two syllables shows that Kitson’s conclusions are 
far from being self-evident. Table 2 offers Kitson’s data in re-ordered form, presenting them 
in non-cumulative form.  
 

Table 2 
 

Word Length   
  3 4 5 > 5 

Chicago Evening Post 8,60 3,40 1,20 0,00 
Chicago American 5,00 2,00 0,70 0,00 
Century 9,20 3,30 0,80 0,20 
American 7,20 2,10 0,50 0,10 

 
Comparing word length of both the two journals (Chicago Evening Post, Chicago American) 
and the two magazines (Century, American) by way of the non-parametric Mann-Whitney U-
test yields non-significant differences in both cases (p = 0.73 and p ≈ 1, respectively), after 
weighting word length by the percentages given; the same holds true for the two journals’ 
data and the two magazines’s data taken together in combination (p = 0.84). Also a Kruskal-
Wallis test for differences between all four groups shows the differences to be non-significant 
(p = 0.98); quite logically, post-hoc comparisons of averages yield no homogeneous sub-
groups. It seems reasonable, therefore, to conclude that, in contrast to Kitson’s observations, 
there are no significant differences across the four journalistic samples with regard to word 
length. 
 In case of his sentence length analyses, based on parallel issues and columns of the 
same four journals and magazines, Kitson provides a better data basis which, as a con-
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sequence, allows for more reliable re-analyses. A total of 8000 sentences were analyzed for 
sentence length, measured in the number of words per sentence. Here, all data are presented, 
pooled in intervals per 10, in a similar fashion as the word length data in Table 1; the data are 
accordingly reproduced in Table 3. 
 

Table 3 
 

Sentence Length (in intervals per 10)   
   1-10 >10 >20 >30 >40 >50 >60 >70 >80 >90 >100 
Chicago Evening Post 16,9 83,1 49 22,3 8,5 2,7 0,8 0,2    
Chicago American 23,1 76,9 43,4 20,6 10,3 2,3 1,8 0,6 0,3 0,2 0,2 
Century 22,8 77,2 45,4 24,4 10,6 5,5 2,4 0,9 0,4 0,2  
American 30,5 69,5 33,5 14,5 5,2 1,8 0,7 0,3 0,1 0,1 0,1 

 
Comparing sentence length for the two journals, the Chicago Evening Post and the Chicago 
American, Kitson states that the results show a greater number of “long” sentences 
(considering sentences with > 20 words as long) in the Post; he likewise finds the Century to 
favor long sentences as compared to the American.  
 Attempting to re-analyze the data, it seems reasonable to re-order them without 
cumulation, in analogy to the word length data presented in Table 2. The corresponding 
sentence length data are presented in Table 4. 
 

Table 4 
 

Sentence Length (in intervals per 10)   
   1-10 >10 >20 >30 >40 >50 >60 >70 >80 >90 >100 
Chicago Evening 
Post 16,9 34,1 26,7 13,8 5,8 1,9 0,6 0,2    
Chicago American 23,1 33,5 22,8 10,3 8 0,5 1,2 0,3 0,1  0,2 
Century 22,8 31,8 21 13,8 5,1 3,1 1,5 0,5 0,2 0,2  
American 30,5 36 19 9,3 3,4 1,1 0,4 0,2     0,1 

 
Again, a re-analysis is not unproblematic, since not the raw data are given, but the 

pooled data in intervals per 10. Nevertheless, after weighting the sentence length categories 
with the percentages given allows a test for differences, in analogy to the above word length 
analyses, first between the two journals and the two magazines, then between all four 
samples. Whereas a Mann-Whitney U-test yields no significant differences between the two 
journals (p = 0.31), it shows the differences between the two magazines to be significant 
(p = 0.03). As to a comparison between all four groups, a Kruskal-Wallis test shows the dif-
ferences to be significant (p = 0.03), but a post-hoc comparison of means yields no homo-
geneous subgroups.  

This seemingly contradictory result might well be due to the fact that all four samples 
follow a common frequency distribution model, though with different weights for the 
individual length classes, what should result in different parameter values for the given 
model. In order to test this assumption, it would be necessary to have the original data at 
hand, what is not the case. Nevertheless, by way of some approximation, one might try to 
reconstruct original sample sizes given the fact that on the whole, 8000 sentences were 
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analyzed, based on four approximately equal sample sizes. The results of reconstructing the 
corresponding absolute frequencies are represented in Table 5. 

 
Table 5 

 
  Sentence Length (in intervals per 10) 
 1 2 3 4 5 6 7 8 9 10 11 
   1-10 >10 >20 >30 >40 >50 >60 >70 >80 >90 >100 
Chicago Evening Post 338 682 534 276 116 38 12 4 0 0 0 
Chicago American 462 670 456 206 160 10 24 6 2 0 4 
Century 456 636 420 276 102 62 30 10 4 4 0 
American 610 720 380 186 68 22 8 4 0 0 2 

 
In trying to find a theoretical frequency distribution as an adequate model for these data, it 
turns out that the negative binomial distribution defined as 
 

(1) 
1 k x

x

k x
P p q

x
  

  
 

 

 
is an excellent model for the three of the data sets (Chicago Evening Post, Century, Amer-
ican), whereas the Chicago American data can be fitted by the mixed negative binomial 
distribution defined as 
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1 1
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x x
 

      
     

   
, 

 
both of course in one-displaced form. Taking into account that we are concerned with mixed 
data, in all cases, the need for a mixed model seems to be reasonable – quite evidently, with 
α = 0 or α = 1, the mixed model (2) has the ordinary model (1) as a special case.. 

Figures 1-4 show the fitting results, with parameter values for k and p given below the 
graphs, as well as the discrepancy coefficients C = X²/N, with C < 0.02 indicating a good, 
C < 0.01 a very good fitting result.1  
 
Chicago Evening Post Chicago American 

 
k =  826.59,     p = 0.998,     C = 0.0051 k = 3.36,   p = 0.70,   α = 0.23,   C = 0.0060 

                                                 
1 In case of the Chicago Evening Post data, with parameter k → ∞ and 1-p = q → 0, the negative 
binomial distribution converges against the Poisson distribution, yielding an equally good fit with a = 
1.66 and C = 0.0051. – The Century data can also be modeled by the Mixed Poisson distribution: with 
a = 3.31, b = 1.30, and α = 0.19 the result is almost identical, with C = 0.0054.  
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Century American 

  
k =  4.59,    p = 0.73,     C = 0.0077 k =  5.41,     p = 0.81,     C = 0.0056 
Figures 1-4. Fitting the distribution of sentence length by the negative binomial distribution 

 
 
The sentence length data thus indeed follow one and the same model, albeit with some “local” 
modifications.  
 As a result, one can say that Kitson has indeed raised interesting and important 
questions which, in one way or another, would today be treated between the fields of applied 
and quantitative linguistics. Whereas earlier word length and sentence length studies had 
mainly treated them in terms of individual author characteristics, on the basis of literary 
texts – in order to determine authorship, for example, or literary development –, Kitson, not 
referring to the works of Sherman, Mendenhall and others, extended the field of interest to 
“everyday” journalistic texts, asking for recipient specific and, in this sense, pragmatic 
differences. Almost simultaneously with and subsequent to his work, the influential discipline 
of text difficulty and readability research would become increasingly important: after the first 
readability formula suggested by Lively and Pressey in 1923, this line of research faced a first 
highlight in Rudolf Flesch’s works (e.g., Flesch 1948), very much later leading to, among 
others, systematic analyses of different journalistic sources (e.g., Amstad 1978). And although 
Kitson did not create a readability formula, he is considered to have shown how the principles 
work (cf. DuBay 2004: 13), since in almost all readability studies, word and sentence length 
have always played a crucial role, though not as separate, but specifically related factors, 
more often combined with further linguistic levels and units.  
 In this context, it may be important to emphasize that Kitson explicitly stated that from 
these findings he would not reason that superiority in long words or sentences proves con-
clusively a corresponding intellectual superiority. Admitting that “long words and long sen-
tences are not an absolute criterion of erudition or short of ignorance” (ibd., 63), he never-
theless admits “that in the long run, the chances favor a greater number of long words being 
associated with more enlightened people” (ibd., 63). Interestingly enough, Kitson (ibd., 63) 
refers to a relation between vocabulary richness (in terms of the size of an individual’s 
subjective lexicon) on the one hand, and word length on the other: “Measurements made by 
various vocabulary tests have shown that there are more words in the vocabulary of the more 
enlightened; hence we might expect a greater number of long words there.”  
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Gordana Đura�: Generalized Poisson models for word length frequencies in 
texts of Slavic languages. Diss. University of Graz, Austria. Reviewed by E. 
Nemcová. 
 
Usually, one does not review dissertations but the above work has been written 
at the Department of Statistics, hence it plays a special role. The fact that statist-
icians admit linguistic problems as worth of being studied signalizes a kind of 
paradigm change and inclusion of linguistics in the circle of at least “more 
exact” sciences. This trend can be observed in different official places. At the 
University of Lancaster, Rosie Knight has been awarded the inaugural Anna 
Siewierska Memorial Prize for her dissertation “Laws Governing Rank Fre-
quency and Stratification in English Texts”, and in Bucharest, the physicist 
Ioan-Iovitz.Popescu obtained the Prize for Exact Sciences “Grigore Moisil” of 
the National Grand Lodge of Romania in partnership with the Romanian 
Academy for the book “The Lambda Structure of Texts”. It is not easy to break 
a paradigm which is frequently similar to a religion but in the present time the 
breaks come in shorter time intervals.   
 The second positive feature of this dissertation is the fact that it has been 
written in English. That means, English has been admitted in Austria as a dis-
sertation language. For international communication in science it is a step 
forward, and for Englishmen it means to accept deviations not as errors but as 
inherent parts of the “intelligent Middle European English” which is one of the 
dozens of English dialects.  
 The author concentrates on some Slavic languages, discusses the prob-
lem of zero-syllabic words which may be considered proclitics, and computes 
word length in terms of syllable numbers. Any other definition of word length 
evokes insurmountable difficulties.  
 The book can be used also as a text-book on the Poisson distribution. Of 
course, no book can encompass all possible derivations, interrelations and uses 
of the Poisson distribution but for Slavic languages the author prepared a very 
thorough introduction. One finds here chapters on the Fucks-Poisson mixture, 
Singh-Poisson, Cohen-Poisson, Hyper-Poisson and some generalized Poisson 
distributions based on Lagrange development. Each chapter contains displace-
ments, size-bias and different estimation methods for moments. In each chapter 
there are many details concerning the distributions (expectation, variance, prob-
ability generating function), there are figures showing the course of the distribu-
tion. In a separate chapter one finds the fitting to data, some other related dis-
tributions, theoretical chapters about generating functions and estimators. .  
 The book is a contribution to two disciplines at the same time. Of course, 
the problem of word length distribution is not finished. The more languages one 
analyzes, the more new distributions will appear. This is not caused by the 
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availability of software but by a number of boundary conditions which are 
different in all languages. The idea to find a unique law working without any 
boundary conditions must be given up. This holds not only for physics but 
especially for the social sciences where the abilities, inheritance, social status, 
education, age, gender, aim, etc. of the individual play a decisive role. Since 
language is the most complex product of Man, whose highest principle is 
undisturbed communication, the means for reaching it are manifold. Whatever 
background model we use, e.g. urn model, Poisson birth process, waiting time, 
etc., every language uses different technique based on its grammar. Strongly 
analytic languages use short words, strongly synthetic languages use a mixture 
of long and short words (synsemantics); hence in every language the technique 
of placing words of different length is different. This may lead not only to 
differences in parameters but also to differences in models. 
   But even in one language text sorts may be different. A model adequate 
for poems need not be adequate for a stage play, etc. Texts of a language cannot 
be considered equal to a big basin full of homogeneous water, but rather to a 
garden in which every flower is different. Just as there is no mean height or 
colour of the flowers, there is no mean word length in a language, there is no 
mean word length even for Shakespeare (only for his known written works) and 
there are no populations in language having some mean properties. This boils 
down to the fact that for the study of word length corpuses as a whole cannot be 
used, only single texts are admissible. This fact has been very consequently taken 
into account in the reviewed book: the texts are studied individually but for the 
same text several models have been proposed. Usually the procedure of fitting is 
as follows: One fits several distributions to all texts and chooses the simult-
aneously best for all. Unfortunately, there are usually several “best” fittings. 
Decisions could be made if we knew the boundary conditions, but this aim will 
— perhaps — be attained in the distant future when hundreds of languages and 
millions of texts have been analyzed. For the time being we proceed rather 
inductively: that which is empirically better wins. 
 The problem of boundary conditions intervenes even with individual texts. 
Are they homogeneous? Were they written in one go or did the author make 
coffee pauses? Did (s)he or some editor make many corrections in the ready text? 
Frequently, we must modify a “good” model and create modified distributions, or 
we try with mixed distributions of which the Fucks-Poisson model is the best 
known. A possible “theory” in this domain runs through our fingers and we at 
least hope that we approximate some fictive truth.  
 Mathematically, the book is an excellent and very systematic introduction 
to different problems of probability distributions. It can be used not only for 
word length problems but mutatis mutandis for any linguistic problem that needs 
probabilistic modelling. The book can be recommended both to linguists and 
mathematicians. 
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Emmerich Kelih, Die Silbe in slawischen Sprachen. Von der Optimalitätstheorie zu einer 
funktionalen Interpretation. München-Berlin-Washington D.C.: Sagner 2012, 188 pp. 
(Specimina Philologiae Slavicae 168)  
Reviewed by Emília Nemcová. 
 
The book under review is both an excellent historical survey of the syllable problem and a 
methodological analysis of different approaches. While the majority of linguists believe that a 
linguistic unit is a strictly defined real entity having crisp boundaries - a belief which is a 
remnant of older “essentialistic” times - the author adheres rather to the conjecture of L. 
Hřebíček saying that “Let there be some (hypothetical) text constructs composed of some 
(hypothetical) components. If the size of the components is a function of the size of the 
constructs, according to Menzerath’s law, then both the constructs and the components are 
textual units and they lie on two different levels” (cf. Altmann 2001: 11). Since the best 
criteria for establishing a linguistic unit are laws, and syllable length depends on word length, 
the “existence” of syllables can be considered as given, though some philosophies and 
linguists deny its theoretical relevance on different grounds. Of course, there are different 
models of syllable, but these are merely means of description.  
 In the first chapter the author succeeds in integrating the syllable in Köhler’s (1986, 
2005) self-regulation cycle representing the best way to a theory of language and text. This is 
done passim, hence the book is at the same time both a survey of some results and an 
introduction to theoretical thinking and to a deductive approach in linguistics. Syllable has the 
same fate as all other linguistic units: one discusses their definitions (there are dozens of 
definitions of word and sentence, too), rules of forming, criteria for separation based on some 
rules and describes the inventories or types. This is, of course, necessary, but it is only a 
necessary, but not a sufficient condition for theoretical work. Theoretical work begins with 
hypotheses and their testing. Rules are not part of a theory. In the best case they are criteria, 
and as such they are conventions.    
 In the second chapter different conceptions and definition of syllable are presented: for 
structuralism, it is Pulgram (1970), for generative phonology it is Hooper (1972, 1976) who 
begins to deviate from the conception of crisp boundaries and begins to measure. The 
measurement is the basis of Vennemann’s (1988) approach who presents a dynamic syllable 
and whose approach can further be developed, and Lehfeldt’s  (1971) method who applies a 
probability approach for syllable segmentation. His algorithm has been programmed and 
applied in several languages. 
 Vennemann (1982, 1983, 1986, 1988) elaborated a number of preference rules - which 
are erroneously called laws and criticized on this reason by Kelih - representing tendencies of 
syllable formation. Many of these tendencies could be statistically tested. Kelih criticizes 
Vennemann’s conception of a “better” syllable which should perhaps be replaced by “more 
frequent” or “easier to pronounce” or something else that is measurable. 
 Optimality “theory” is a classical case of a search for “essences”: what is syllable and 
how to separate it from the next one. But even if we know it, nobody says what is the aim of 
this procedure? What are the results useful for? Usually, one sets up a hypothesis and samples 
data which are relevant for its testing. If the data force us to reject the hypothesis, we first 
check the data, then the criteria and at last, the hypothesis. In inductive/exploratory research 
we produce data and search for a “regularity” under which it could be subsumed and we 
generalize stepwise. But in optimality theory one cannot recognize either an existing or a 
future theory. Kelih is frugal with his criticism but evidently this is a case of proto-scientific 
approach asking merely “what is there?”   
 The third chapter revives the one hundred years old discussion concerning sonority. Is 
it an intuitive concept or can it be objectively measured? Can it be used for syllable definition 
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and separation? Or is it a conglomerate of several properties? Some authors treat it as a crisp 
property, other ones speak about approximations and probability. Perhaps the theory of fuzzy 
sets would bring an acceptable solution to several problems.    
 The chapter on phonotactics - a concept appearing in the whole book - is very critical. 
Are there mirror-effects, asymmetries, positional preferences, correlation with phonetic 
distances, links to other properties, how to take a sample, etc.? Kelih is keen on showing the 
main deficiencies in statistical processing (or better: non-processing) of data. But even if one 
of the hypotheses has been positively tested in one language, is the trend a general 
phenomenon? How many languages must be included in the sample in order to render both 
types of errors small? Or would it not be better to strive for a theoretical approach from which 
individual hypotheses could be derived? In that case the hypothesis would be at least 
theoretically corroborated. The whole discipline, strongly supported by universalists, has a 
methodological shortage: it searches for universals, not for laws. All laws are universals but 
not vice versa. There is a long way from a universal to a law but in qualitative linguistics even 
rules or frequent events are called laws as mentioned above. 
  Chapter 5 brings a survey of trials to use statistics, in most cases for classification. The 
author shows the results and their weaknesses. Deviations are “explained” by the authors 
using some ad hoc criteria. One does not try to derive a function containing parameters for 
boundary conditions, one relies on absolute numbers. Nevertheless, these first steps in Slavic 
languages were the initiators of more sophisticated approaches in this century. The only 
reasonable hypothesis is the statement that the more syllable types there are in a language, the 
longer are they on the average. This relationship is clearly linear as shown on p. 137.  
 The last chapter is, from the point of Quantitative Linguistics, of course, the most 
progressive. After is has been shown that the syllable is a “legal” linguistic unit having all 
properties required by Altmann (1996), its placing in theory is performed by stating its 
relationship to different other language properties. It fits into the Köhlerian control cycle 
which contains additional links and interrelations to other linguistic properties. From the 
synergetic point of view there is no other and better way to “theorify” a linguistic entity. The 
author specifies a number of hypotheses linking the syllable and its properties with other 
entities. Unfortunately, functions, data and tests are not given - this is a task for generations of 
linguists - but if a theory of syllable is to be set up, the book under review furnishes us all 
necessary requirements. As a matter of fact, any future quantitative or synergetic approach 
can rely on it. 
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